This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Advanced In-Plane Rotation-Invariant Correlation Filters
April 1994 (vol. 16 no. 4)
pp. 415-420

Advanced correlation filter synthesis algorithms to achieve rotation invariance are described. We use a specified form for the filter as the rotation invariance constraint and derive a general closed-form solution for a multiclass rotation-invariant filter that can recognize a number of different objects. By requiring the filter to minimize the average correlation plane energy, we produce a multiclass rotation invariant (RI) RI-MACE filter, which controls correlation plane sidelobes and improves discrimination against false targets. To improve noise performance, we require the filter to minimize a weighted sum of correlation plane signal and noise energy. Initial test results of all filters are provided.

[1] B. Bhanu, "Automatic target recognition: State of the art survey,"IEEE Trans. Aerosp. Electron. Syst., vol. AES-22, pp. 364-379, July 1986.
[2] J. K. McWilliams and M. D. Srinath, "Performance analysis of a target detection system using infrared imagery,"IEEE Trans. Aerosp. Electron. Syst., vol. AES-20, pp. 38-49, January 1984.
[3] L. G. Minor and J. Sklansky, "Detection and segmentation of blobs in infrared images,"IEEE Trans. Syst., Man., Cybern., vol. SMC-11, pp. 216-232, Mar. 1981.
[4] B. Bhanu, "Representation and shape matching of 3-D Objects,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 340-350, May 1984.
[5] D. L. Flannery and J. L. Horner, "Fourier optical signal processors,"Proc. IEEE, vol. 77, pp. 1511-1526, Oct. 1989.
[6] Y. N. Hsu and H. H. Arsenault, "Optical pattern recognition using circular harmonic expansion,"Appl. Opt., vol. 21, pp. 4016-4019, Nov. 1982.
[7] P.-E. Danielsson and H. Sauleda, "Rotation-invariant 2D-filters matched to 1D-features,"Comput. Vision Pattern Recogn., pp. 155-159, June 1985.
[8] J. Campos and H. H. Arsenault, "Optimum sidelobe-reducing invariant matched filters for pattern recognition," inOptical Computing, Proc. SPIE, vol. 963, pp. 298-303, Aug. 1988.
[9] E. Ochoa, G. F. Schils, and D. W. Sweeny, "Detection of multiple views of an object in the presence of clutter,"Opt. Eng., vol. 27, pp. 266-273, Apr. 1988.
[10] D. Casasent, A. Iyer, and G. Ravichandran, "Circular harmonic function MACE filters,"Appl. Opt., vol. 30, pp. 5169-5175, Dec. 1991.
[11] D. Casasent, "Unified synthetic discriminant function computational formulation",Appl. Opt., vol. 23, pp. 1620-1627, May 1984.
[12] G. Ravichandran and D. Casasent, "Generalized in-plane rotation-invariant minimum average correlation energy filter,"Opt. Eng., vol. 30, pp. 1601-1607, Oct. 1991.
[13] A. Mahalanobis, B. V. K. Vijaya Kumar, and D. Casasent, "Minimum average correlation energy filters,"Appl. Opt., vol. 26, pp. 3633-3640, Sept. 1987.
[14] G. Ravichandran and D. Casasent, "Minimum noise and correlation energy (MINACE) optical correlation filter,"Appl. Opt., vol. 31, pp. 1823-1833, Apr. 1992.
[15] N. Ben-Yosef, K. Wilner, S. Simhony, and G. Feigin, "Measurement and analysis of 2-D infrared natural background,"Appl. Opt., vol. 24, pp. 2109-2113, July 1985.

Index Terms:
filtering and prediction theory; invariance; correlation methods; image recognition; correlation filters; rotation invariance; closed form solution; multiclass rotation-invariant filter; average correlation plane energy; RI-MACE filter; noise energy; correlation plane signal; pattern recognition
Citation:
G. Ravichandran, D. Casasent, "Advanced In-Plane Rotation-Invariant Correlation Filters," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 4, pp. 415-420, April 1994, doi:10.1109/34.277595
Usage of this product signifies your acceptance of the Terms of Use.