This Article 
 Bibliographic References 
 Add to: 
Constrained Regularized Differentiation
January 1994 (vol. 16 no. 1)
pp. 88-92

Numerical differentiation is an ill-posed problem. This article demonstrates that the application of the regularization theory together with the methods of projections on convex sets of constraints improve the accuracy of the derivatives calculation. Simulation results are presented and the applications of the proposed method to edge detection are discussed.

[1] J. F. Canny, "A computational approach to edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 679-697, 1986.
[2] T. Poggio, H. Voorhees, and A. Yuille, "A regularized solution to edge detection,"J. Complexity, vol. 4, pp. 106-123, 1988.
[3] A. K. Katsaggelos and B. J. Sullivan, "Regularized edge detection," inProc. ICASSP, New York, vol. 88, pp. 1048-1051, 1988.
[4] N. Friedland and D. Adam, "Automatic cavity boundary detection from sequential ultrasound images using simulated annealing,"IEEE Trans. Med. Imaging, vol. 8, pp. 344-353, 1989.
[5] T. Pavlidis and Y. T. Liow, "Integrated region growing and edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 225-234, 1990.
[6] M. Bertero, T. A. Poggio, and V. Torre, "Ill-posed problems in early vision,"Proc. IEEE, vol. 76, pp. 869-889, Aug. 1988.
[7] E. R. Hancock and J. Kittler, "Edge-labeling using dictionary based relaxation,"IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 165-181, 1990.
[8] H. D. Tagare and R. J. P. de Figueiredo, "On the localization performance measure and optimal edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 1186-1190, 1990.
[9] D. Geman, S. Geman, C. Graffigne, and P. Dong, "Boundary detection by constrained optimization,"IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 609-628, 1990.
[10] P. Perona and J. Malik, "Scale space and edge detection using anisotropic diffusion,"IEEE Trans. Pattern Anal. Machine Intell., vol. 12, pp. 629-640, 1990.
[11] R. W. Hamming,Digital Filters. Englewood Cliffs, NJ: Prentice Hall, 1977.
[12] A. Tikhonov and V. Arsenin,Solution of Ill-Posed Problems. Washington, DC: Winston, 1977.
[13] N. E. Hurt,Phase Retrieval and Zero Crossings: Mathematical Methods in Image Reconstruction. Dordrecht: Kluwer, 1989.
[14] A. M. Taratorin and S. Sideman, "Image restoration: A problem of finding stable solutions satisfying a set of constraints," submitted toIEEE Trans. Signal Processing, 1991.
[15] T. S. Huang, Ed.,Two-Dimensional Digital Signal Processing: Topics in Applied Physics, vol. 43, Berlin: Springer, 1981.
[16] Y. S. Fong, C. A. Pomalaza-Raez, and X. H. Wang, "Comparison study of non-linear filters in image processing applications,"Opt. Eng., vol. 28, pp. 749-760, 1989.
[17] A. Yuille and T. Poggio, "Scaling theorems for zero crossings,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 1, pp. 15-25, 1986.
[18] Y. Lu and R. C. Jain, "Reasoning about edges in scale space,"IEEE Trans. Pattern Anal. Machine Intell., vol. 14, pp. 450-468, 1992.
[19] J. Feng, W. Ling, and C. Chen, "Epicardial boundary detection using fuzzy reasoning,"IEEE Trans. Medical Imag., vol. 10, pp. 187-199, 1991.
[20] K. Philip, E. Dove, D. McPherson, and K. Chandran, "Automatic detection of left ventricular endocardium in cardiac images,"Comput. in Cardiology, pp. 443-446, 1991.

Index Terms:
edge detection; differentiation; numerical analysis; constrained regularized differentiation; numerical differentiation; regularization theory; edge detection
A.M. Taratorin, S. Sideman, "Constrained Regularized Differentiation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 1, pp. 88-92, Jan. 1994, doi:10.1109/34.273713
Usage of this product signifies your acceptance of the Terms of Use.