This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Effective Scale: A Natural Unit for Measuring Scale-Space Lifetime
October 1993 (vol. 15 no. 10)
pp. 1068-1074

A manner in which a notion of effective scale can be introduced in a formal way is developed. For continuous signals, a scaling argument directly gives a natural unit for measuring scale-space lifetime in terms of the logarithm of the ordinary scale parameter. That approach is, however, not appropriate for discrete signals since an infinite lifetime would be assigned to structures existing in the original signal. It is shown how such an effective scale parameter can be defined to give consistent results for both discrete and continuous signals. The treatment is based on the assumption that the probability that a local extremum disappears during a short-scale interval should not vary with scale. As a tool for the analysis, estimates are given of how the density of local extrema can be expected to vary with scale in the scale-space representation of different random noise signals both in the continuous and discrete cases.

[1] M. Abramowitz and I. A. Stegun,Handbook of Mathematical Functions. Boulder, CO: Nat. Bur. Stds., 1964, vol. 55, Appl. Math. Ser.
[2] M. F. Barnsleyet al., The Science of Fractals. New York: Springer-Verlag, 1988.
[3] P. J. Burt and E.H. Adelson, "The Laplacian pyramid as a compact image code,"IEEE Trans. Commun., vol. COM-31, pp. 532-540, Apr. 1983.
[4] H. Cramer and M. R. Leadbetter,Stationary and Related Stochastic Processes. New York: Wiley, 1967.
[5] J. L. Crowley and R. M. Stern, "Fast computation of the difference of low pass transform,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-6, pp. 212-222, 1984.
[6] L. M. J. Floracket al., "Scale and the differential structure of images,"Image Vision Comput., vol. 10, pp. 376-388, 1992.
[7] J. J. Koenderink, "The structure of images,"Biol. Cybern., vol. 50, pp. 363-370, 1984.
[8] T. P. Lindeberg, "Scale-space for discrete signals,"IEEE Trans. Patt. Anal. Machine Intell., vol. 12, no. 3, pp. 234-254, 1990.
[9] T. P. Lindeberg, "Discrete scale-space theory and the scale-space primal sketch," Ph.D. thesis, ISRN KTH/NA/P-91/R-SE, Royal Inst. of Technol., Stockholm, Sweden, 1991. A revised and extended version in [14].
[10] T. P. Lindeberg and J. O. Eklundh, "On the computation of a scale-space primal sketch,"J. Visual Commun. Image Repr., vol. 2, no. 1, pp. 55-78, 1991.
[11] T. P. Lindeberg, "Scale-space behavior of local extrema and blobs,"J. Math. Imaging Vision, vol. 1, pp. 65-99, 1992.
[12] T. P. Lindeberg and J. O. Eklundh, "The scale-space primal sketch: Construction and experiments,"Image Vision Comput., vol. 10, pp. 3-18, 1992.
[13] T. P. Lindeberg, "Detecting salient blob-like image structures with a scale-space primal sketch--A method for focus-of-attention,"Int. J. Comput. Vision, vol. 11, no. 3, pp. 283-318, 1993 (in press).
[14] T. P. Lindeberg,Scale-Space Theory in Early Vision. Norwell, MA: Kluwer (Int. Series in Eng. and Comput. Sci.), 1993 (to be published).
[15] U. Müssigmann, "Texture analysis, fractals and scale-space filtering," inProc. 6th Scand. Conf. Image Anal.(Oulu, Finland), June 19-22, 1989, pp. 987-993.
[16] A. Papoulis,Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, 1972.
[17] S. O. Rice, "Mathematical analysis of random noise,"Bell Syst. Tech. J., vol. XXIV, no. 1, pp. 46-156, 1945.
[18] M. R. Spiegel,Mathematical Handbook of Formulas and Tables. New York: McGraw-Hill, 1968.
[19] A. P. Witkin, "Scale-space filtering," inProc. 8th Int. Joint Conf. Artificial. Intell.(Karlsruhe, Germany), Aug 8-12, 1983, pp. 1019-1022.
[20] A. Yuille and T. Poggio, "Scaling theorems for zero crossings,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 1, pp. 15-25, 1986.

Index Terms:
effective scale; scale-space lifetime measurement unit; image processing
Citation:
T. Lindberg, "Effective Scale: A Natural Unit for Measuring Scale-Space Lifetime," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp. 1068-1074, Oct. 1993, doi:10.1109/34.254063
Usage of this product signifies your acceptance of the Terms of Use.