This Article 
 Bibliographic References 
 Add to: 
Image Representation Via a Finite Radon Transform
October 1993 (vol. 15 no. 10)
pp. 996-1006

A model of finite Radon transforms composed of Radon projections is presented. The model generalizes to finite group projections in the classical Radon transform theory. The Radon projector averages a function on a group over cosets of a subgroup. Reconstruction formulae that were formally similar to the convolved backprojection ones are derived, and an iterative reconstruction technique is found to converge after a finite number of steps. Applying these results to the group Z/sub 2//sup P/, new computationally favorable image representations have been obtained. A numerical study of the transform coding aspects is attached.

[1] N. Ahmed and K. R. Rao,Orthogonal Transforms for Digital Signal Processing. New York: Springer-Verlag, 1975.
[2] E. D. Bolker, "The finite Radon transform,"Contemp. Math., vol. 63, pp. 27-50, 1987.
[3] C. W. Curtis and I. Reiner,Representation Theory of Finite Groups and Associative Algebras. New York: Wiley, 1962.
[4] P. Diaconis and R. L. Graham, "The Radon transform onZ2k,"Pacific J. Math., vol. 118, pp. 323-345, 1985.
[5] H. Enomoto and K. Shibaka, "Orthogonal transform coding system for television signals,"IEEE Trans. Electromagn. Compat., vol. EMC-13, pp. 11-17, 1971.
[6] M. Hall, Jr.,Combinatorial Theory. Waltham-Toronto-London: Blaisdell, 1967.
[7] S. Helgason,The Radon Transform. Boston: Birkhäuser, 1980.
[8] G. T. Herman,Image Reconstruction from Projections. Berlin-Heidelberg-New York: Springer-Verlag, 1980.
[9] A. K. Jain, "Image data compression: A review,"Proc. IEEE, vol. 69, pp. 349-389, 1981.
[10] A. K. Jain, "Some new techniques in image processing," inImage Science Mathematics(C. O. Wilde and E. Barrett, Eds.). North Hollywood, CA: West, 1977, pp. 201-223.
[11] F. Keinert, "Inversion ofk-plane tranforms and applications in computer tomography,"SIAM Rev., vol. 31, pp. 273-298, 1989.
[12] J. P. S. Kung, "Reconstructing finite Radon transforms,"Nuclear Phys. B (Proc. Supl.), vol. 5A, pp. 44-49, 1988.
[13] F. Matús, "Discrete marginal problem for complex measures,"Kybernetika, vol. 24, pp. 36-46, 1988.
[14] F. Matús, "Independence and Radon projections on compact groups," Ph.D. thesis (in Slovak),ÚTIA CSAV, Prague 1988.
[15] W. K. Pratt,Digital Image Processing. New York: Wiley, 1978.
[16] W. K. Pratt, W. H. Chen and L. R. Welch, "Slant transform image coding,"IEEE Trans. Commun., vol. COM-22, pp. 1075-1093, 1974.
[17] J. L. C. Sanz, E. B. Hinkle, and A. K. Jain,Radon and Projection Transform-Based Computer Vision. Berlin-Heidelberg: Springer Verlag, 1988.
[18] R. S. Strichartz, "Radon inversion--Variations on a theme,"Amer. Math. Monthly, vol. 89, pp. 377-384, 1982.

Index Terms:
subgroup cosets; convergence; finite Radon transforms; Radon projections; finite group projections; iterative reconstruction technique; group theory; image reconstruction; transforms
F. Matús, J. Flusser, "Image Representation Via a Finite Radon Transform," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp. 996-1006, Oct. 1993, doi:10.1109/34.254058
Usage of this product signifies your acceptance of the Terms of Use.