This Article 
 Bibliographic References 
 Add to: 
Solving Satisfiability Via Boltzmann Machines
May 1993 (vol. 15 no. 5)
pp. 514-521

Boltzmann machines (BMs) are proposed as a computational model for the solution of the satisfiability (SAT) problem in the propositional calculus setting. Conditions that guarantee consensus function maxima for configurations of the BM associated with solutions to the satisfaction problem are given. Experimental results that show a linear behavior of BMs solving the satisfiability problem are presented and discussed.

[1] E. H. L. Aarts and J. H. M. Korst, "Boltzmann machines and their applications,"LNCS, vol. 258, pp. 34-51, 1987.
[2] E. Aarts and J. Korst,Simulated Annealing and Boltzmann Machines, A Stochastic Approach to Combinational Optimization ond Neural Computing. New York: Wiley, 1989.
[3] E. H. L. Aarts and J. H. M. Korst, "Computations in massively parallel networks based on the Boltzmann machine: A review,"Parallel Comp., vol. 9, pp. 129-145, 1989.
[4] E. H. L. Aarts and J. H. M. Korst, "Boltzmann machines for travelling salesman problems,"Europ. J. Oper. Res., vol. 39, pp. 79-95, 1989.
[5] E. H. L. Aarts and J. H. M. Korst, "Boltzmann machines as a model for parallel annealing,"Algorithmica, vol. 6, pp. 437-465, 1991.
[6] D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, "A learning algorithm for Boltzmann machines,"Cogn. Sci., vol. 9, pp. 147-169, 1985.
[7] M. Davis and H. Putnam, "A computing procedure for quantification theory,"J. Ass. Comput. Mach., vol. 7, no. 3, pp. 201-215, 1960.
[8] A. d'Anjou, M. Graña, F. J. Torrealdea, and M. C. Hernandez, "Máquinas de Boltzmann para la resolución del problema de la satisfiabilidad en el cálculo propositional,"Rev. Esp. Autom. Inf., vol. 24, pp. 24-33, 1991.
[9] W. F. Dowling and J. H. Gallier, "Linear-time algorithms for testing the satisfiability of propositional Horn formulae,"J. Logic Prog., vol. 3, pp. 267-284, 1984.
[10] G. Gallo and G. Urbani, "Algorithms for testing the satisfiability of propositional formulae,"J. Logic Prog., vol. 7, pp. 45-61, 1989.
[11] A. V. Gelder, "A satisfiability tester for non-clausal propositional calculus,"Inform. Computation, vol. 79, pp. 1-21, Oct. 1988.
[12] P. Hansen and B. Jaumard, "Algorithms for the maximum satisfiability problem,"Computing, vol. 44, pp. 279-303, 1990.
[13] D. S. Johnson, "Approximation algorithms for combinatorial problems,"J. Comp. Syst. Sci., vol. 9, pp. 256-278, 1974.
[14] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, "Optimization by simulated annealing: An experimental evaluation; Part 1, Graph partitioning,"Oper. Res., vol. 37, no. 6, pp. 865-892, 1989.
[15] S. Kirpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing,"Sci., vol. 20, pp. 671-680, 1983.
[16] P.J.M. van Laarhoven and E.H.L. Aarts,Simulated Annealing: Theory and Applications, Kluwer Academic, Boston, 1987.
[17] K. J. Lieberherr, "Algorithmic extremal problems in combinatorial optimization,"J. Algorithms, vol. 3, pp. 225-244, 1982.
[18] B. Monien and E. Speckenmeyer, "Solving satisfiability in less than 2nsteps,"Disc. Appl. Math., vol. 10, pp. 287-295, 1985.
[19] G. Pinkas, "Energy minimization and the satisfiability of propositional logic" (D. S. Touretzky, J. L. Elman, T. J. Sejnowski, and G. E. Hinton, Eds.), inProc. 1990 Connectionist Summer Sch., (San Mateo, CA), 1990.
[20] P. W. Purdom, "Solving satisfiability with less searching,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, no. 4, pp. 510-513, 1984.
[21] T. J. Sejnowski, "Higher-order Boltzmann machines,"Neural Networks Comput., pp. 398-403, 1984.
[22] P. J. Zwietering and E. H. L. Aarts, "The convergence of parallel Boltzmann machines" (R. Eckmiller, C. Hartmann, and G. Hauske Eds.). Amsterdam: North Holland,Parallel Processing in Neural Systems and Computers, 1990, pp. 277-280.

Index Terms:
simulated annealing; Boltzmann machines; computational model; satisfiability; propositional calculus; consensus function maxima; Boltzmann machines; calculus; set theory; simulated annealing
A. d'Anjou, M. Graña, F.J. Torrealdea, M.C. Hernandez, "Solving Satisfiability Via Boltzmann Machines," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 5, pp. 514-521, May 1993, doi:10.1109/34.211473
Usage of this product signifies your acceptance of the Terms of Use.