This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
The Accuracy of the Computation of Optical Flow and of the Recovery of Motion Parameters
May 1993 (vol. 15 no. 5)
pp. 434-447

The accuracy and the dependence on parameters of a general scheme for the analysis of time-varying image sequences are discussed. The approach is able to produce vector fields from which it is possible to recover 3-D motion parameters such as time-to-collision and angular velocity. The numerical stability of the computed optical flow and the dependence of the recovery of 3-D motion parameters on spatial and temporal filtering is investigated. By considering optical flows computed on subsampled images or along single scanlines, it is also possible to recover 3-D motion parameters from reduced optical flows. An adequate estimate of time-to-collision can be obtained from sequences of images with spatial resolution reduced to 128*128 pixels or from sequences of single scanlines passing near the focus of expansion. The use of Kalman filtering increases the accuracy and the robustness of the estimation of motion parameters. The proposed approach seems to be able to provide not only a theoretical background but also practical tools that are adequate for the analysis of time-varying image sequences.

[1] J. K. Aggarwal and N. Nandhakumar, "On the computation of motion from sequences of images--A review,"Proc. IEEE, vol. 76, no. 8, pp. 917-935, 1988.
[2] M. Bertero, T. A. Poggio, and V. Torre, "Ill-posed problems in early vision,"Proc. IEEE, vol. 76, pp. 869-889, Aug. 1988.
[3] M. J. Black and P. Anandan, "A model for the detection of motion over time," inProc. Third Int. Conf. Comput. Vision, 1990, pp. 33-37.
[4] P. Bouthemy, "Extracting dense motion information from an image sequence: Optic flow estimation and related issues," inKinematic and Dynamic Issues on Sensor-Based Control(G. E. Taylor, Ed.). New York: Springer, 1990, pp. 223-250.
[5] R. Bucy and P. Joseph,Filtering for Stochastic Processes with Applications to Guidance. New York: Wiley, 1968.
[6] H. H. Bülthoff, J. J. Little, and T. Poggio, "Parallel motion algorithm explains barber pole and motion capture illusion without "tricks',"J. Opt. Soc. Amer. A, vol. 4, 1987.
[7] P. J. Burt, C. Yen, and X. Xu, "Local correlation measures for motion analysis: A comparative study," inProc. IEEE Comput. Soc. Conf. Patt. Recogn. Image Processing(Las Vegas), 1982, pp. 269-274.
[8] M. Campani and A. Verri, "Computing optical flow from an overconstrained system of linear algebraic equations," inProc. Third Int. Conf. Comput. Vision1990, pp. 22-26.
[9] E. De Micheli, G. Radonich, S. Uras, and V. Torre, "An algorithm for optical flow," inProc. NATO ARW Neurocomput. Algorithms Architectures Applications(Les Arcs, France), 1989.
[10] E. De Micheli, S. Uras, and V. Torre, "The analysis of time varying image sequences," inProc. First Euro. Conf. Comput. Vision, 1990.
[11] E. D. Dickmanns, B. Mysliwetz, and T. Christians, "An integrated spatio-temporal approach to automatic visual guidance of autonomous vehicles,"IEEE Trans. Syst. Man Cybern., vol. 20, no. 6, pp. 1273-1284, 1990.
[12] O. D. Faugeras, F. Lustman, and G. Toscani, "Motion and structure from motion from point and line matches," inProc. First Int. Conf. Comput. Vision, 1987, pp. 25-34.
[13] C. L. Fenmena and W. B. Thompson, "Velocity determination in scenes containing several moving objects,"Comput. Graph. Image Proc., no. 9, pp. 301-315, 1979.
[14] E. Francois and P. Bouthemy, "Derivation of qualitative information in motion analysis,"Image Vision Comput., no. 8, pp. 279-288, 1990.
[15] J. J. Gibson,The Perception of the Visual World. Boston: Houghton Mifflin, 1950.
[16] C. Harris, "Structure from motion under ortographic projection," inProc. First Euro. Conf. Comput. Vision, 1990.
[17] F. Heitz and P. Bouthemy, "Multimodal estimation of discontinuous optical flow using Markov random fields,"IRISA Tech. Rep.561, 1990.
[18] E. Hildreth,The Measurement of Visual Motion, Cambridge, MA: MIT Press, 1983.
[19] B. K. P. Horn and B. G. Schunck, "Determining optical flow," Artificial Intell., vol. 17, 185-204, 1981.
[20] R. Kalman, P. Falb, and M. Arbib,Topics in Mathematical System Theory. New York: McGraw-Hill, 1969.
[21] J.K. Kearny, W.B. Thompson, and D.L. Boley, "Optical flow estimation: An error analysis of gradient-based methods with local optimization,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, pp. 229-244, Mar. 1987.
[22] J. J. Koenderink and A. J. Van Doorn, "How an ambulant observer can construct a model of the environment from the geometrical structure of the visual inflow," inKibernetics(G. Hauske and E. Butendant, Eds.). Munich: Oldenbourg, 1977.
[23] J. J. Koenderink, "Optic flow,"Vis. Res., vol. 26, pp. 161-168, 1986.
[24] C. Lanczos,Linear Differential Operators. London: Van Nostrand, 1961.
[25] J. Little and A. Verri, "Analysis of differential and matching techniques for optical flow," inProc. IEEE Workshop Visual Motion(Irvine CA), 1989.
[26] H. C. Longuet-Higgins and K. Prazdny, "The interpretation of a moving retinal image,"Proc. Royal Soc. Lond. B, vol. 208, pp. 385-397, 1980.
[27] D. G. Lowe, Integrated treatment of matching and measurement errors for robust model-based tracking," inProc. Third Int. Conf. Comput. Vision, 1990, pp. 436-440.
[28] A. Mitiche, Y. F. Wang, and J. K. Aggarwal, "Experiments in computing optical flow with the gradient-based, multiconstraint methods,"Patt. Recogn., vol. 20, no. 2, 1987.
[29] H.-H. Nagel and W. Enkelmann, "An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-8, no. 5, pp. 565-593, Sept. 1986.
[30] H. H. Nagel, "Recent advances in image sequences analysis," inProc. Premier colloque Image Traitement Synthes Technologie Applications(Biarritz), 1984, pp. 545-558.
[31] H. H. Nagel, "Extending the "oriented smoothness constrain" into the temporal domain and the estimation of derivatives of optical flow," inProc. First Europ. Conf. Comput. Vision, 1990.
[32] R. C. Nelson and J. Aloimonos, "Obstacle avoidance using flow field divergence,"IEEE Trans. Patt. Anal. Machine Intell.vol. PAMI-11, pp. 1102-1106, 1989.
[33] W. Reichart, R. W. Schlögl, and M. Egelhaaf, "Movement detector of the correlation type provide sufficient information for local computation of 2-D velocity field,"Die Naturwissenschaften, 1988.
[34] J. W. Roach and J. K. Aggarwal, "Computer tracking of objects moving in space,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-1, pp. 127-135, 1979.
[35] B. G. Schunck,Image Flow: Fundamentals and Algorithms(W. N. Martin and J. K. Aggarwal, Eds. Boston: Kluwer, 1988.
[36] A. N. Tichonov and V. Y. Arsenin,Solutions of Ill-Posed Problems. Washington, DC, Winston, 1977.
[37] V. Torre and T. A. Poggio, "On edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 147-163, Mar. 1986.
[38] R. Y. Tsai and T. S. Huang, "Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces," Univ. Illinois at Urbana-Champaign, Coordinated Sci. Lab. Rep. R-921, 1982.
[39] S. Ullmann,The Interpretation of Visual Motion. Cambridge, MA: MIT Press, 1979.
[40] S. Uras, A. Verri, F. Girosi, and V. Torre, "A computational approach to motion perception,"Biol. Cybern., vol. 60, pp. 79-87, 1988.
[41] A. Verri, F. Girosi, and V. Torre, "Mathematical properties of the two-dimensional motion field: From singular points to motion parameters,"J. Opt. Soc. Amer. A, vol. 6, no. 5, pp. 698-712, 1989.
[42] A. Verri, S. Uras, and E. De Micheli, "Motion segmentation from optical flow," inProc. Fifth Alvey Vision Conf.(Reading), 1989.
[43] A. Verri, F. Girosi, and V. Torre, "Differential techniques for optical flow,"J. Opt. Soc. Amer. A, vol. 7, no. 5, pp. 912-922, 1990.
[44] A. Waxman, "Image flow theory: A framework for 3-D inference from time varying imagery," inAdvances in Computer Vision(C. Brown, Ed. Lawrence Erlbaum, 1987.
[45] M. Yamamoto, "A general aperture problem for direct estimation of 3D-motion parameters,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-11, pp. 528-536, 1989.
[46] X. Zhuang, T. S. Huang, and R. M. Haralick, "Two view motion analysis: A unified algorithm,"J. Opt. Soc. Amer. A, vol. 3, no. 9, pp. 1492-1500, 1986.

Index Terms:
3D motion parameter recovery; spatial filtering; optical flow; time-varying image sequences; time-to-collision; angular velocity; temporal filtering; subsampled images; scanlines; Kalman filtering; 128 pixels; 16384 pixels; filtering and prediction theory; image sequences; motion estimation; optical information processing; parameter estimation
Citation:
E. De Micheli, V. Torre, S. Uras, "The Accuracy of the Computation of Optical Flow and of the Recovery of Motion Parameters," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 5, pp. 434-447, May 1993, doi:10.1109/34.211464
Usage of this product signifies your acceptance of the Terms of Use.