
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
M. Unser, A. Aldroubi, M. Eden, "The L/sub 2/Polynomial Spline Pyramid," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 4, pp. 364379, April, 1993.  
BibTex  x  
@article{ 10.1109/34.206956, author = {M. Unser and A. Aldroubi and M. Eden}, title = {The L/sub 2/Polynomial Spline Pyramid}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {15}, number = {4}, issn = {01628828}, year = {1993}, pages = {364379}, doi = {http://doi.ieeecomputersociety.org/10.1109/34.206956}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  The L/sub 2/Polynomial Spline Pyramid IS  4 SN  01628828 SP364 EP379 EPD  364379 A1  M. Unser, A1  A. Aldroubi, A1  M. Eden, PY  1993 KW  signal processing; signal approximation; parametric multiresolution signal representation; L/sub 2/polynomial spline pyramid; linear filtering; hierarchical data structure; REDUCE function; prefilter; downsampler; EXPAND function; upsampler; postfilter; image processing; Laplacian pyramid; cubic spline pyramid; filtering and prediction theory; signal processing; splines (mathematics) VL  15 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
The authors are concerned with the derivation of general methods for the L/sub 2/ approximation of signals by polynomial splines. The main result is that the expansion coefficients of the approximation are obtained by linear filtering and sampling. The authors apply those results to construct a L/sub 2/ polynomial spline pyramid that is a parametric multiresolution representation of a signal. This hierarchical data structure is generated by repeated application of a REDUCE function (prefilter and downsampler). A complementary EXPAND function (upsampler and postfilter) allows a finer resolution mapping of any coarser level of the pyramid. Four equivalent representations of this pyramid are considered, and the corresponding REDUCE and EXPAND filters are determined explicitly for polynomial splines of any order n (odd). Some image processing examples are presented. It is demonstrated that the performance of the Laplacian pyramid can be improved significantly by using a modified EXPAND function associated with the dual representation of a cubic spline pyramid.
[1] A. Rosenfeld,Multiresolution Image Processing. New York: SpringerVerlag, 1984.
[2] S. Tanimoto and T. Pavlidis, "A hierarchical data structure for picture processing,"Comput. Graphics, Image Processing, vol. 4, pp. 104119, 1975.
[3] C. A. Harlow and S. A. Eisenbeis, "The analysis of radiographic images,"IEEE Trans. Comput., vol. 22, pp. 678688, 1973.
[4] W. Hackbush,MultiGrid Methods and Applications. New York: SpringerVerlag, 1985.
[5] D. Terzopoulos, "Multilevel computational processes for visual surface reconstruction,"Comput. Vision Graphics Image Processing, vol. 24, pp. 5296, 1983.
[6] R. Szeliski, "Fast surface interpolation using hierarchical basis functions,"IEEE Trans. Patt. Anal. Machine Intell., vol. 12, pp. 513528, June 1990.
[7] D. Terzopoulos, "Image analysis using multigrid relaxation methods,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, pp. 129139, Mar. 1986.
[8] W. Enkelmann, "Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences,"Comput. Vision Graphics Image Processing, vol. 43, pp. 150177, 1988.
[9] P. J. Burt and E.H. Adelson, "The Laplacian pyramid as a compact image code,"IEEE Trans. Commun., vol. COM31, pp. 532540, Apr. 1983.
[10] J. L. Crowley and R. M. Stern, "Fast computation of the difference of low pass transform,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI6, pp. 21222, 1984.
[11] M. Vetterli, "Multidimensional subband coding: some theory and algorithms,"Signal Processing, vol. 6, pp. 97112, Apr. 1984.
[12] J. W. Woods and S. D. O'Neill, "Subband coding of images,"IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP34, no. 5, pp. 12781288, Oct. 1986.
[13] S. G. Mallat, "Multiresolution approximation and wavelet orthogonal bases ofL2(R),"Trans. Amer. Math. Soc., vol. 315, pp. 6987, 1989.
[14] S. G. Mallat, "A theory of multiresolution signal decomposition: The wavelet representation,"IEEE Trans. Patt. Anal. Machine Intell., vol. 11, pp. 674693, 1989.
[15] P. J. Burt, "Fast algorithms for estimating local image properties,"Comput. Graphics Image Processing, vol. 21, pp. 368382, 1983.
[16] M. Unser, "Description statistique de textures: applicationàl'inspection automatique," Ph.D. thesis, Swiss Fed. Inst. of Technol., Lausanne, Switzerland, 1984.
[17] A. P. Witkin, "Scalespace filtering," inProc. 4th Int. Joint Conf. Artificial Intell., 1983. pp. 10191022.
[18] J. Koenderink, "The structure of images,"Biol. Cybern., vol. 50, pp. 363370, 1984.
[19] J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda, "Uniqueness of the Gaussian kernel for scalespace filtering,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, pp. 2633, Jan. 1986.
[20] A. Yuille and T. Poggio, "Scaling theorems for zero crossings,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, no. 1, pp. 1525, 1986.
[21] T. Lindeberg, "Scalespace for discrete signals,"IEEE Trans. Patt. Anal. Machine Intell., vol. 12, pp. 234254, Mar. 1990.
[22] I. J. Schoenberg, "Cardinal interpolation and spline functions,"J. Approximation Theory, vol. 2, pp. 167206, 1969.
[23] A. Aldroubi, M. Unser, and M. Eden, "Cardinal spline filters: Stability and convergence to the ideal sine interpolator,"Signal Processing, vol. 28, pp. 127138, Aug. 1992.
[24] I. J. Schoenberg, "Contribution to the problem of approximation of equidistant data by analytic functions,"Quart. Appl. Math., vol. 4, pp. 4599; 112141, 1946.
[25] M. Unser, A. Aldroubi, and M. Eden, "Fast Bspline transforms for continuous image representation and interpolation,"IEEE Trans. Patt. Anal. Machine Intell., vol. 13, pp. 277285, Mar. 1991.
[26] I. J. Schoenberg,Cardinal spline interpolation. Philadelphia, PA: Soc. Indus. Applied Math., 1973.
[27] I. J. Schoenberg, "Notes on spline functions III: On the convergence of the interpolating cardinal splines as their degree tends to infinity,"Israel J. Math., vol. 16, pp. 8792, 1973.
[28] P. M. Prenter,Splines and Variational Methods. New York: Wiley, 1975.
[29] L. L. Schumaker,Spline Functions: Basic Theory. New York: Wiley, 1981.
[30] B. K. P. Horn,Robot Vision. Cambridge, MA: M.I.T. Press, 1986.
[31] M. Unser, A. Aldroubi, and M. Eden, "Polynomial spline signal approximations: Filter design and asymptotic equivalence with Shannon's sampling theorem,"IEEE Trans. Inform. Theory, vol. 38, pp. 19, Jan. 1992.
[32] W. K. Pratt,Digital Image Processing. New York: Wiley, 1978.
[33] P. G. Lemarié, "Ondelettesàlocalisation exponentielles,"J. Math. Pures Appl., vol. 67, pp. 227236, 1988.
[34] A. Stuart and J. K. Ord,Kendall's Advanced Theory of StatisticsVolume 1: Distribution Theory. New York: Oxford University Press, 1987.
[35] M. Unser, A. Aldroubi and M. Eden, "A family of polynomial spline wavelet transforms," NCRR Rep. 153/90, Nat. Inst. Health, 1990.
[36] C. de Boor,A Practical Guide to Splines. New York: SpringerVerlag, 1978.
[37] A. Aldroubi, M. Unser and M. Eden, "Asymptotic properties of least squares spline filters and application to multiscale decomposition of signals," in Proc.Int. Symp. Inform. Theory Applications(Waikiki, HI), Nov. 2730, 1990, pp. 271274.
[38] M. Unser and M. Eden, "Multiresolution feature extraction and selection for texture segmentation,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI11, pp. 717728, July 1989.
[39] D. Marr and E. Hildreth, "Theory of edge detection,"Proc. Roy. Soc. London, vol. B 207, pp. 187217, 1980.
[40] A. J. Jerri, "The Shannon sampling theoremIts various extensions and applications: A tutorial review,"Proc. IEEE, vol. 65, pp. 15651596, 1977.
[41] R. E. Crochiere and L. R. Rabiner, "Interpolation and decimation of digital signals,"Proc. IEEE, vol. 69, pp. 300331, Mar. 1981.
[42] C. K. Chui and J. Z. Wang, "On compactly supported spline wavelets and a duality principle,"Trans. Am. Math. Soc., vol. 330, no. 2, pp. 903915, 1992.
[43] M. Unser, A. Aldroubi and M. Eden, "On the asymptotic convergence of Bspline wavelets to Gabor functions,"IEEE Trans. Inform. Theory, vol. 38, pp. 864872, Mar. 1992.