The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - March (1993 vol.15)
pp: 307-312
ABSTRACT
<p>A simple local smoothing filter is defined for curves or surfaces, combining the advantages of Gaussian smoothing and Fourier curve description. Unlike Gaussian filters, the filter described has no shrinkage problem. Repeated application of the filter does not yield a curve or surface smaller than the original but simply reproduces the approximate result that would have been obtained by a single application at the largest scale. Unlike Fourier description, the filter is local in space. The wavelet transform of Y. Meyer (1989) is also shown to have these properties.</p>
INDEX TERMS
local reproducible smoothing filter; image processing; curves; surfaces; Gaussian smoothing; Fourier curve description; Fourier description; filtering and prediction theory; Fourier analysis; image processing
CITATION
J. Oliensis, "Local Reproducible Smoothing Without Shrinkage", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.15, no. 3, pp. 307-312, March 1993, doi:10.1109/34.204914
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool