
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
K. Kanatani, "Unbiased Estimation and Statistical Analysis of 3D Rigid Motion from Two Views," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, no. 1, pp. 3750, January, 1993.  
BibTex  x  
@article{ 10.1109/34.184773, author = {K. Kanatani}, title = {Unbiased Estimation and Statistical Analysis of 3D Rigid Motion from Two Views}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {15}, number = {1}, issn = {01628828}, year = {1993}, pages = {3750}, doi = {http://doi.ieeecomputersociety.org/10.1109/34.184773}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Unbiased Estimation and Statistical Analysis of 3D Rigid Motion from Two Views IS  1 SN  01628828 SP37 EP50 EPD  3750 A1  K. Kanatani, PY  1993 KW  3D rigid motion estimation; nonlinear least squares optimisation; image sequences; statistical analysis; covariance matrices; Nvectors; epipolar constraint; geometry; unbiased estimation; image sequences; motion estimation; optimisation; statistical analysis VL  15 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
The problem of estimating 3D rigid motion from point correspondences over two views is formulated as nonlinear leastsquares (LS) optimization, and the statistical behaviors of the errors in the solution are analyzed by introducing a realistic model of noise described in terms of the covariance matrices of Nvectors. It is shown that the LS solution based on the epipolar constraint is statistically biased. The geometry of this bias is described in both quantitative and qualitative terms. Finally, an unbiased estimation scheme is presented, and random number simulations are conducted to observe its effectiveness.
[1] J. Aisbett, "An iterated estimation of the motion parameters of a rigid body from noisy displacement vectors,"IEEE Trans. Patt. Anal. Machine Intell., vol. 12, pp. 10921098, 1990.
[2] K. S. Arun, T. S. Huang, and S. D. Blostein, "Leastsquares fitting of two 3D point sets,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI9, no. 5, pp. 698700, 1987.
[3] T. Broida and R. Chellappa, "Estimation of object motion parameters from noisy images,"IEEE Trans. Pattern Anal. Machine Intell, vol. PAMI8, no. 1, Jan. 1986.
[4] T. J. Broida and R. Chellappa, "Performance bounds for estimating threedimensional motion parameters from a sequence of noisy images,"J. Opt. Soc. Amer., vol. A6, pp. 879998, 1989.
[5] T. J. Broida and R. Chellappa, "Estimating the kinematics and structure of a rigid object from a sequence of monocular images,"IEEE Trans. Patt. Anal. Machine Intell., vol. 13, pp. 497513, 1991.
[6] T. J. Broida, S. Chandrashekhar, and R. Chellappa, "Recursive estimation of 3D kinematics and structure from noisy monocular image sequences,"IEEE Trans. Aerosp. Electron. Syst., vol. AES26, pp. 639656, Aug. 1990.
[7] O. Faugeras and S. Maybank, "Motion from point matches: multiplicity of solutions,"Int. J. Comput. Vision, vol. 4, pp. 225246, June 1990.
[8] B. K. P. Horn, "Closedform solution of absolute orientation using unit quaternions,"J. Opt. Soc. Amer., vol. A4, pp. 629642, 1987.
[9] B. K. P. Horn, H. M. Hilden, and S. Negahdaripour, "Closedform solution of absolute orientation using orthonormal matrices,"J. Opt. Soc. Amer., vol. A5, pp. 11281135, 1988.
[10] T. S. Huang and O. D. Faugeras, "Some properties of theEmatrix in twoview motion estimation,"IEEE Trans. Patt. Anal. Machine Intell., vol. 11, pp. 13101312, 1989.
[11] C. Jerian and R. Jain, "Polynomial methods for structure from motion,"IEEE Trans. Patt. Anal. Machine Intell., vol. 12, pp, 11501165, 1990.
[12] C. Jerian and R. Jain, "Structure from motionA critical analysis of methods,"IEEE Trans. Sys. Man Cybern., vol. 21, pp. 572588, 1991.
[13] K. Kanatani, "Camera rotation invariance of image characteristics,"Comput. Vision Graphics Image Processing, vol. 39, pp. 328354, 1987.
[14] K. Kanatani, "Constraints on length and angle,"Comput. Vision Graphics Image Processing, vol. 41, pp. 2842, 1988.
[15] K. Kanatani, "Transformation of optical flow by camera rotation,"IEEE Trans. Patt. Anal. Machine Intell., vol. 10, pp. 131143, 1988.
[16] K. Kanatani, Group Theoretical Methods in Image Understanding, New York: Springer, 1990.
[17] K. Kanatani, "Computational projective geometry,"CVGIP: Image Understanding, vol. 54, pp. 333448, 1991.
[18] K. Kanatani,Geometric Computation for Machine Vision. Oxford: Oxford Univ. Press, 1993.
[19] C. H. Lee, "Timevarying images: The effect of finite resolution on uniqueness,"CVGIP: Image Understanding, vol. 54, pp. 325332, 1991.
[20] S. Lee and Y. Kay, "A Kalman filter approach for accurate 3D motion estimation from sequence of stereo images,"CVGIP: Image Understanding, vol. 54, pp. 244258, 1991.
[21] H. C. LonguetHiggins, "A computer algorithm for reconstructing a scene from two projections,"Nature, vol. 293, no. 10, pp. 133135, 1981.
[22] H. C. LonguetHiggins, "Multiple interpretations of a pair of images of a surface,"Proc. Roy. Soc. Lond., vol. A418, pp. 115, 1988.
[23] L. Matthies, T. Kanade, and R. Szeliski, "Kalman filterbased algorithms for estimating depth from image sequences,"Int. J. Comput. Vision, vol. 3, pp. 209236, 1989.
[24] H. H. Nagel, "Representation of moving rigid objects based on visual observations,"Comput., vol. 14, no. 8, pp. 2939, 1981.
[25] A. N. Netravali, T. S. Huang, A. S. Krishnakumar, and R. J. Holt, "Algebraic methods in 3D motion estimation from twoview point correspondences,"Int. J. Imaging Syst. Tech., vol. 1, pp. 7899, 1989.
[26] J. Philip, "Estimation of threedimensional motion of rigid objects from noisy observations,"IEEE Trans. Patt. Anal. Machine Intell., vol. 13, pp. 6166, 1991.
[27] J. Porrill, "Fitting ellipses and predicting confidence envelopes using a bias corrected Kalman filter,"Image Vision Comput., vol. 8, pp. 3741, 1990.
[28] J.W. Roach and J. K. Aggarwal, "Determining the movement of objects from a sequence of images,"IEEE Trans. Patt. Anal. Machine Intell., vol. 2, pp. 544562, 1980.
[29] M. E. Spetsakis and J. Aloimonos, "Optimal computing of structure from motion using point correspondences in two frames," Tech. Rep. CARTR389, Comput. Vision Lab., Cent. Automat. Res., Univ. Maryland, College Park, 1988.
[30] M. E. Spetsakis and J. Aloimonos, "A multiframe approach to visual motion perception,"Int. J. Comput. Vision, vol. 6, pp. 245255, 1991.
[31] R. Y. Tsai and T. S. Huang, "Uniqueness and estimation of threedimensional motion parameters of rigid objects with curved surfaces,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI6, pp. 1327, 1984.
[32] S. Ullman,The Interpretation of Visual Motion. cambridge, MA: MIT Press, 1979.
[33] S. Umeyama, "Leastsquares estimation of transformation parameters between two point patterns,"IEEE Trans. Patt. Anal. Machine Intell., vol. 13, pp. 376380, 1991.
[34] J. Weng, T. S. Huang, and N. Ahuja, "Motion and structure from two perspective views: Algorithms, error analysis, and error estimation,"IEEE Trans. Patt. Anal. Machine Intell., vol. 11, pp. 451467, 1989.
[35] G. S. J. Young and R. Chellappa, "3D motion estimation using a sequence of noisy stereo images: Models, estimation, and uniqueness results,"IEEE Trans. Patt. Anal. Machine Intell., vol. 12, pp. 735759, 1990.
[36] X. Zhuang, "A simplification to linear two view motion algorithms,"Comput. Vision Graphics Image Processing, vol. 46, pp. 175178, 1989.
[37] X. Zhuang, T. S. Huang, and R. M. Haralick, "Twoview motion analysis: A unified algorithm,"J. Opt. Soc. Amer., vol. A3, pp. 14921500, 1986.