
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
J.F. Jenq, S. Sahni, "Serial and Parallel Algorithms for the Medial Axis Transform," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 12, pp. 12181224, December, 1992.  
BibTex  x  
@article{ 10.1109/34.177389, author = {J.F. Jenq and S. Sahni}, title = {Serial and Parallel Algorithms for the Medial Axis Transform}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {14}, number = {12}, issn = {01628828}, year = {1992}, pages = {12181224}, doi = {http://doi.ieeecomputersociety.org/10.1109/34.177389}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Serial and Parallel Algorithms for the Medial Axis Transform IS  12 SN  01628828 SP1218 EP1224 EPD  12181224 A1  J.F. Jenq, A1  S. Sahni, PY  1992 KW  area reporting problem; parallel algorithms; medial axis transform; serial algorithm; CREW PRAM algorithm; SIMD hypercube parallel algorithm; perimeter reporting problem; hypercube algorithm; computational complexity; hypercube networks; image processing; parallel algorithms; transforms VL  14 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
An O(n/sup 2/) time serial algorithm is developed for obtaining the medial axis transform (MAT) of an n*n image. An O(log n) time CREW PRAM algorithm and an O(log/sup 2/ n) time SIMD hypercube parallel algorithm for the MAT are also developed. Both of these use O(n/sup 2/) processors. Two problems associated with the MAT, the area and perimeter reporting problem, are studied. An O(log n) time hypercube algorithm is developed for both of them, where n is the number of squares in the MAT, and the algorithms use O(n/sup 2/) processors.
[1] H. Blum,Models for the Perception of Speech and Visual Form. Cambridge, MA: MIT Press, 1967, pp. 362380.
[2] M. R. Garey and D. S. Johnson,Computers and Intractability. San Francisco: W. H. Freeman, 1979.
[3] S. Chandran and D. Mount, "Shared memory algorithms and the medial axis transform," inProc. IEEE 1987 Workshop CAPAMI, pp. 4450.
[4] S. Chandran, S. Kim, and D. Mount, "Parallel computational geometry of rectangles," to appear inAlgorithmica.
[5] R. Guting, "An optimal contour algorithm for isooriented rectangles,"J. Algorithms, vol. 5, pp. 303326, 1984.
[6] P. Javis, "Parallel solutions for some design automation problems," Ph.D. dissertation, Univ. of Minnesota, St. Paul.
[7] C. Kruskal, L. Rudolph, and M. Snir, "The power of parallel prefix," inProc. IEEE Int. Conf. Parallel Processing, 1985, pp. 180185.
[8] D. T. Lee, "Medial axis transformation of a planar shape,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI4, no. 4, pp. 363369, July 1982.
[9] M. Lu and P. Varman, "Optimal algorithms for rectangle problems on a meshconnected computer,"J. Parallel Distributed Comput.vol. 5, pp. 154171, 1988.
[10] D. Nassimi and S. Sahni, "Data broadcasting in SIMD computers,"IEEE Trans. Comput., vol. C30, no. 2, pp. 101107, 1981.
[11] D. Nassimi and S. Sahni, "Optimal BPC permutations on a cube connected computer,"IEEE Trans. Comput., vol. C31, no. 4, pp. 338341, 1982.
[12] Ranka, S., and S. Sahni,Hypercube Algorithms for Image Processing and Pattern Recognition, SpringerVerlag, Berlin, 1990.
[13] A. Rosenfeld and A. Kak,Digital Picture Processing, New York: Academic, 1976.
[14] K. Vo, "Prob 804,"J. Algorithms, vol. 4, no. 3, pp. 366368, 1982.
[15] D. Wood, "The contour problem for rectilinear polygons,"Inform. Processing Lett, vol. 17, pp. 229235, 1984.
[16] A. Y. Wu, S. K. Bhaskar, and A. Rosenfeld, "Computation of geometric properties from the medial axis transform inO(NlogN)time,"Comput. Vision Graphics Image Processing, vol. 34, pp. 7692, 1986.
[17] A. Y. Wu, S. K. Bhaskar, and A. Rosenfeld, "Parallel computation of geometric properties from the medial axis transform,"Comput. Vision Graphics Image Processing, vol. 41, pp. 323332, 1988.