This Article 
 Bibliographic References 
 Add to: 
Some Sequential Algorithms for a Generalized Distance Transformation Based on Minkowski Operations
November 1992 (vol. 14 no. 11)
pp. 1114-1121

A generalized distance transformation (GDT) of binary images and the related medial axis transformation (MAT) are discussed. These transformations are defined in a discrete space of arbitrary dimension and arbitrary grids. The GDT is based on successive morphological operations using alternatively N arbitrary structuring elements: N is called the period of the GDT. The GDT differs from the classical distance transformations based on a point-to-point distance. However, the well-known chessboard, city-block, and hexagonal distance transformations are special cases of the one-period GDT, whereas the octagonal distance transformation is a special case of the two-period GDT. In this paper, both one- and two-period GDTs are discussed. Different sequential algorithms are proposed for computing such GDTs. These algorithms need a maximum of two scannings of the image. The computation of the MAT is also discussed.

[1] H. Blum, "A transformation for extracting new descriptions of shape," inModel for Perception of Speech and visual Form(Walthen Dunn, Ed.). Cambridge, MA: MIT Press, Nov. 1964, pp. 362-380.
[2] A. Rosenfeld and J. Pfaltz, "Sequential operations in digital picture processing,"J. ACM, vol. 4, 1966.
[3] A. Rosenfeld and J. L. Pfaltz, "Distance functions on digital pictures,"Patt. Recogn., vol. 1, pp. 33-61, 1968.
[4] P. E. Danielsson, "Euclidean distance mapping,"Comput. Graphics Image Processing, vol. 14, pp. 227-248, 1980.
[5] S. Yokoi, J. -I. Toriwaki, and T. Fukumura, "On generalized distance transformation of digital pictures,"IEEE Trans. Patt. Anal. Machine Intell., vol. 3, no. 4, pp. 424-443, July 1981.
[6] J. Serra,Image Analysis and Mathematical Morphology. London: Academic, 1982.
[7] G. Borgefors, "Distance transformations in arbitrary dimensions,"Comput. Vision Graphics Image Processing, vol. 27, no. 3, pp. 321-345, 1984.
[8] G. Bertrand, "Skeleton in derived grids,"Seventh ICPR(Montreal, Canada), July 30-Aug. 2, 1984, pp. 326-329.
[9] G. Bertrand, "Determination de l'axe median par sur-echantillonnage fictif," in4th Congrès Reconnaissance des Formes et Intelligence Artificielle, (Paris), 1984, pp. 265-275.
[10] C. Arcelli and G. S. di. Baja, "A width-independent fast thinning algorithm,"IEEE Trans. Patt. Anal. Machine Intell., vol. 7, no. 4, pp. 463-474, 1985.
[11] S. R. Sternberg, "An overview of image algebra and related architectures,"Integrated Technology for Parallel Image Processing(S. Levialdi, Ed.). London: Academic, 1985, pp. 79-100.
[12] S. Suzuki and K. Abe, "New fusion operations for digitized binary images and their applications,"IEEE Trans. Patt. Anal. Machine Inell., vol. 7, no. 6, pp. 638-651, Nov. 1985.
[13] J. Pecht, "Speeding-up successive Minkowski operations with bit plane computers,"Patt. Recogn. Lett., vol. 3, pp. 113-117, Mar. 1985.
[14] G. Borgefors, "Distance transformations in digital images,"Comput. Vision, Graphics, Image Processing, vol. 34, pp. 334-371, 1986.
[15] P. A. Maragos, R. W. Schafer, "Morphological skeleton representation and coding of binary images,"IEEE Trans. Acoustics Speech Signal Processing, vol. ASSP-34, pp. 1228-1244, 1986.
[16] M. Milgram and J. -P. Cocquerez, "Fermerture des contours par un opèrateur local,"Traitement du signal, vol. 3, no. 6, pp. 303-311, 1986.
[17] X. Zhuang and R. M. Haralick, "Morphological structuring element decomposition,"Comput. Vision, Graphics, Image Processing, vol. 35, pp. 370-382, 1986.
[18] M. Yamashita and T. Ibaraki, "Distances defined by neighborhood sequences,"Patt. Recogn., vol. 19, no. 3, pp. 237-246, 1986.
[19] C. Arcelli and G. Sanniti di Baja, "A contour characterization for multiply connected figures,"Patt. Recogn. Lett., vol. 6, pp. 245-249, Sept. 1987.
[20] A. R. Dill, M. D. Levine, and P. B. Noble, "Multiple resolution skeletons,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-9, pp. 495-504, July 1987.
[21] R.M. Haralick, S.R. Sternberg, and X. Zhuang, "Image analysis using mathematical morphology,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, no. 4, pp. 532-550, 1987.
[22] R. A. Melter, "Some characterizations of city block distance,"Patt. Recogn. Lett., pp. 235-240, Sept. 1987.
[23] A. Montanvert, "Filtrage de decomposition de formes par manipulation de régions,"6ème congrès en Reconnaissance des formes et Intelligence Artificielle(Antibes), Nov. 1987, pp. 233-241.
[24] L. G. Shapiro, R. S. MacDonald, and R. S. Sternberg, "Ordered structural shape matching with primitive extraction by mathematical morphology,"Patt. Recogn., vol. 20, no. 1, pp. 75-90, 1987.
[25] P. P. Das and B. N. Chatterji, "Knight's distance in digital geometry,"Patt. Recogn. Lett., pp. 215-226, Apr. 1988.
[26] W. Gong, "On decomposition of structural element for mathematical morphology,"9th ICPR(Rome), Nov. 1988, pp. 836-838.
[27] X. Wang and G. Bertrand, "An algorithm for a generalized distance transformation based on Minkowski operations," inProc. 9th Int. Conf. Patt. Recog., 1988, pp. 1164-1168.
[28] M. -H. Chen and P. -F. Yan, "A multiscale approach based on morphological filtering,"IEEE Trans. Patt. Anal. Machine Intell., vol. 11, no. 7, pp. 694-700, July 1989.
[29] L. Ji, J. Piper, and J. -Y. Tang, "Erosion and dilation of binary images by arbitrary structuring elements using interval coding,"Patt. Recogn. Lett., vol. 9, pp. 201-209, Apr. 1989.
[30] P. Maragos, "Pattern spectrum and multiscale shape representation,"IEEE Trans. Patt. Anal. Machine Intell, vol. 11, no. 7, pp. 701-716, July 1989.
[31] P. Maragos, "A unified theory of translation-invariant systems with applications to morphological analysis and coding of images," Ph.D. thesis and Tech. Rep. DSPL-85-1, Atlanta, GA, 1985.
[32] L. Abbott, R. M. Haralick, and X. Zhuang, "Pipeline architectures for morphologic image analysis,"Machine Vision Applicat., vol. 1, pp. 23-40, 1988.
[33] D. Schonfeld, and J. Goutsias, "A fast algorithm for the morphological coding of binary images,"SPIE Proc. Visual Commun. Imaging Processing, vol. 1001, pp. 138-145, 1988.
[34] D. Schonfeld, and J. Goutsias, "Morphological representation of discrete and binary images,"IEEE Trans. Acoust. Speech Signal Processing, 1991, vol. 39, pp. 411-414.
[35] D. Schonfeld and J. Goutsias, "On the morphological representation of binary images in a noisy environment,"J. Visual Commun. Image Representation, vol. 2, no. 1, pp. 17-31, 1991.
[36] Z. Zhou and A. N. Venetsanopoulos, "Morphological skeleton representation and shape recognition," inProc. Int. Conf. Acoustics, Speech Signal Processing, vol. II, 1988, pp. 948-951.
[37] Z. Zhou and A. N. Venetsanopoulos, "Pseudo-Euclidean morphological skeleton transform for machine vision," inProc. Int. Conf. Acoustics Speech Signal Processing, 1989, pp. 1695-1698.
[38] D. Schonfeld and J. Goutsias, "Optimal morphological pattern restoration from noisy binary images,"IEEE Trans. Patt. Anal. Machine Intell, vol. 13, no. 1, pp. 14-29, Jan. 1991.
[39] C. Lantuejoul, "Skeletonization in quantitative metallography,"Issues of Digital Image Processing(R. M. Haralick and J. C. Simon, Eds.). Groningea, The Netherlands: Sijthoff and Noordhoff, 1980.
[40] U. Montanari, "A method for obtaining skeletons using a quasi-Euclidean distance,"J. Assoc. Comput. Machinery, vol. 15, pp. 600-624, Oct. 1968.
[41] X. Wang and G. Bertrand, "Computation of the morphological distances," Internal Rep., ESIEE, 1992.

Index Terms:
mathematical morphology; image processing; sequential algorithms; generalized distance transformation; Minkowski operations; binary images; medial axis transformation; point-to-point distance; image processing; mathematical morphology; transforms
X. Wang, G. Bertrand, "Some Sequential Algorithms for a Generalized Distance Transformation Based on Minkowski Operations," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 11, pp. 1114-1121, Nov. 1992, doi:10.1109/34.166628
Usage of this product signifies your acceptance of the Terms of Use.