This Article 
 Bibliographic References 
 Add to: 
Comments on 'Parallel Algorithms for Hierarchical Clustering and Cluster Validity'
October 1992 (vol. 14 no. 10)
pp. 1056-1057

In the above-titled paper, parallel implementations of hierarchical clustering algorithms that achieve O(n/sup 2/) computational time complexity and thereby improve on the baseline of sequential implementations are described. The latter are stated to be O(n/sup 3/), with the exception of the single-link method. The commenter points out that state-of-the-art hierarchical clustering algorithms have O(n/sup 2/) time complexity and should be referred to in preference to the O(n/sup 3/) algorithms, which were described in many texts in the 1970s. Some further references in the parallelizing of hierarchic clustering algorithms are provided.

[1] J. L. Bentley, B. W. Weide, and A. C. Yao, "Optimal expected time algorithms for closest point problems,"ACM Trans. Math. Software, vol. 6, pp. 563-580, 1980.
[2] M. Bruynooghe, "Méthodes nouvelles en classification automatique des données taxinomiques nombreuses,"Stat. Anal. Données, no. 3, pp. 24-42, 1977.
[3] W. H. E. Day and H. Edelsbrunner, "Efficient algorithms for agglomerative hierarchical clustering methods",J. Classification, vol. 1, no. 1, pp. 7-24, 1984.
[4] D. Defays, "An efficient algorithm for a complete link method,"Comput. J., vol. 20, pp. 364-366, 1977.
[5] J. Juan, "Programme de classification hiérarchique par l'algorithme de la recherche en chaîne des voisins réciproques,"Les Cahiers de l'Analyse des Données, vol. VII, pp. 219-225, 1982.
[6] X. Li, "Parallel algorithms for hierarchical clustering and cluster validity,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-12, no. 11, pp. 1088-1092, 1990.
[7] F. Murtagh, "A survey of recent advances in hierarchical clustering algorithms,"Comput. J., vol. 26, pp. 354-359, 1983.
[8] F. Murtagh, "Expected-time complexity results for hierarchic clustering algorithms which use cluster centres,"Inform. Proc. Lett., vol. 16, pp. 237-241, 1983.
[9] F. Murtagh, "Complexities of hierarchic clustering algorithms: State of the art,"Comput. Stat. Quar., vol. 1, no. 2, pp. 101-113, 1984.
[10] F. Murtagh,Multidimensional Clustering Algorithms. Vienna: Physica-Verlag, 1985, COMPSTAT Lectures, vol. 4.
[11] C. de Rham, "La classification hiérarchique ascendante selon la méthode des voisins réciproques,"Les Cahiers de l'Analyse des Données, vol. V, pp. 135-144, 1980.
[12] F. J. Rohlf, "Algorithm 76: Hierarchical clustering using the minimum spanning tree,"Comput. J., vol. 16, pp. 93-95, 1973.
[13] F. J. Rohlf, "A probabilistic minimum spanning tree algorithm,"Inform. Proc. Lett., vol. 7, pp. 44-48, 1978.
[14] R. Sibson, "SLINK: An optimally efficient algorithm for the single-link cluster method,"Comput. J., vol. 16, pp. 93-95, 1973.
[15] P. H. A. Sneath and R. R. Sokal,Numerical Taxonomy. San Francisco: W. H. Freeman, 1973.
[16] P. Willett, "Efficiency of hierarchic agglomerative clustering using the ICL distributed array processor,"J. Documentation, vol. 45, pp. 1-45, 1989.

Index Terms:
parallel algorithms; pattern recognition; hierarchical clustering; cluster validity; computational time complexity; single-link method; computational complexity; parallel algorithms; pattern recognition
F. Murtaugh, "Comments on 'Parallel Algorithms for Hierarchical Clustering and Cluster Validity'," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 10, pp. 1056-1057, Oct. 1992, doi:10.1109/34.159908
Usage of this product signifies your acceptance of the Terms of Use.