
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
F. Mokhtarian, A.K. Mackworth, "A Theory of Multiscale, CurvatureBased Shape Representation for Planar Curves," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 8, pp. 789805, August, 1992.  
BibTex  x  
@article{ 10.1109/34.149591, author = {F. Mokhtarian and A.K. Mackworth}, title = {A Theory of Multiscale, CurvatureBased Shape Representation for Planar Curves}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {14}, number = {8}, issn = {01628828}, year = {1992}, pages = {789805}, doi = {http://doi.ieeecomputersociety.org/10.1109/34.149591}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  A Theory of Multiscale, CurvatureBased Shape Representation for Planar Curves IS  8 SN  01628828 SP789 EP805 EPD  789805 A1  F. Mokhtarian, A1  A.K. Mackworth, PY  1992 KW  multiscale curvature based shape representation; pattern recognition; image processing; planar curves; curvature scale space image; renormalized curvature scale space image; resampled curvature scale space image; arc length evolution; pattern recognition; picture processing VL  14 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
A shape representation technique suitable for tasks that call for recognition of a noisy curve of arbitrary shape at an arbitrary scale or orientation is presented. The method rests on the describing a curve at varying levels of detail using features that are invariant with respect to transformations that do not change the shape of the curve. Three different ways of computing the representation are described. They result in three different representations: the curvature scale space image, the renormalized curvature scale space image, and the resampled curvature scale space image. The process of describing a curve at increasing levels of abstraction is referred to as the evolution or arc length evolution of that curve. Several evolution and arc length evolution properties of planar curves are discussed.
[1] H. Asada and M. Brady, "The curvature primal sketch,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, no. 1, pp. 214, 1986.
[2] D. H. Ballard, "Generalizing the Hough transform to detect arbitrary shapes,"Patt. Recogn., vol. 13, pp. 111122, 1981.
[3] D. H. Ballard and C. M. Brown,Computer Vision. Englewood Cliffs, NJ: PrenticeHall, 1982.
[4] H. Blum, "Biological shape and visual science (part I),"J. Theoretical Biol., vol. 38, pp. 205287, 1973.
[5] P. E. Danielsson, "A new shape factor,"CGIP, vol. 7, pp. 292299, 1978.
[6] L. S. Davis, "Understanding shape: Angles and sides,"IEEE Trans. Comput., vol. C26, pp. 236242, 1977.
[7] R.O. Duda and P.E. Hart, "Use of the Hough transformation to detect lines and curves in pictures,"Commun. Ass. Comput. Mach., vol. 15, no. 1, pp. 1115, Jan. 1972.
[8] H. Freeman, "Computer processing of linedrawing images,"Computer Surveys, vol. 6, no. 1, Mar. 1974.
[9] M. Gage and R. S. Hamilton, "The heat equation shrinking convex plane curves,"J. Differential Geometry, vol. 23, pp. 6996, 1986.
[10] A. Goetz,Introduction to Differential Geometry. Reading, MA: AddisonWesley, 1970.
[11] R. M. Haralick, A. K. Mackworth, and S. L. Tanimoto, "Computer vision update," Tech. Rep. 8912, Dept. Comput. Sci., Univ. British Columbia, Vancouver, 1989.
[12] J. Hong and X. Tan, "The similarity between shapes under affine transformation," inProc. Second Int. Conf. Computer Vision. Washington, DC: IEEE Comput. Soc. Press, 1988, pp. 489493.
[13] B. K. P. Horn and E. J. Weldon, "Filtering closed curves,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI8, pp. 665668, 1986.
[14] P. V. C. Hough, "Method and means for recognizing complex patterns," U.S. patent 3 069 654, 1962.
[15] R. A. Hummel, B. Kimia, and S. W. Zucker, "Deblurring gaussian blur,"Comput. Vision Graphics Image Processing, vol. 38, pp. 6680, 1987.
[16] W. Kecs,The Convolution Product and Some Applications. Boston, MA: D. Reidel, 1982.
[17] B. Kimia, A. Tannenbaum, and S. W. Zucker, "Toward a computational theory of shape: An overview," TRCIM8913, McGill Univ., 1989.
[18] J. J. Koenderink and A. J. van Doorn, "Dynamic shape,"Biol. Cybern., vol. 53, pp. 383396, 1986.
[19] D. G. Lowe, "Organization of smooth image curves at multiple scales," inProc. 2nd Int. Conf. Computer Vision, 1988, pp. 558567, 1988.
[20] A. K. Mackworth and F. Mokhtarian, "The renormalized curvature scale space and the evolution properties of planar curves,"Proc. IEEE CVPR(Ann Arbor, MI), 1988, pp. 318326.
[21] D. Marr, "Representing visual information," AI Memo 415, Mass. Inst. Technol. AI Lab., Cambridge, 1977.
[22] D. Marr and E. C. Hildreth, "Theory of edge detection,"Proc. Royal Soc. London B, vol. 207, pp. 187217, 1980.
[23] D. Marr and H. K. Nishihara, "Representation and recognition of the spatial organization of 3D structures,"Proc. Royal Soc. London B, vol. 200, pp. 269294, 1978.
[24] J. W. McKee and J. K. Aggarwal, "Computer recognition of partial views of curved objects,"IEEE Trans. Comput., vol. C26, pp. 790800, 1977.
[25] F. Moktarian and A. Mackworth, "Scalebased description and recognition of planar curves and twodimensional shapes,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, no. 1, pp. 3443, Jan. 1986.
[26] F. Mokhtarian, "Fingerprint theorems for curvature and torsion zerocrossings,"Proc. IEEE CVPR(San Diego, CA), 1989, pp. 269275.
[27] F. Mokhtarian, "Convergence properties of curvature and torsion scale space representations," Tech. Rep. 9014, Dept. Comput. Sci., Univ. British Columbia, Vancouver, 1990.
[28] H. K. Nishihara, "Intensity, visiblesurface, and volumetric representations,"Artificial Intell., vol. 17, pp. 265284, 1981.
[29] T. Paylidis, "Segmentation of pictures and maps through functional approximations,"CGIP, vol. 1, pp. 360372, 1972.
[30] T. Paylidis, "Optimal piecewise polynomialL2approximation of functions of one and two variables,"IEEE Trans. Comput., vol. C24, pp. 98102, 1975.
[31] T. Pavlidis, "Polygonal approximations by Newton's method,"IEEE Trans. Comput., vol. C26, pp. 800807, 1977.
[32] E. Persoon and K. S. Fu, "Shape discrimination using Fourier descriptors," inProc. IJCPR(Copenhagen, Denmark), 1974, pp. 126130.
[33] W. Richards, B. Dawson, and D. Whittingham, "Encoding contour shape by curvature extrema," inNatural Computations(W. Richards, Ed.). Cambridge, MA: MIT Press, 1988, pp. 8398.
[34] E. Saund, "Adding scale to the primal sketch," inProc. IEEE CVPR(San Diego, CA), 1989, pp. 7078.
[35] B. Shahraray and D. J. Anderson, "Optimal estimation of contour properties by crossvalidated regularization,"IEEE Trans. Patt. Anal. Machine Intell., vol. 11, pp. 600610, 1989.
[36] J. L. Stansfield, "Conclusions from the commodity expert project," AI Memo 601, Mass. Inst. Technol. AI Lab., Cambridge, MA, 1980.
[37] G. Wahba, "A survey of some smoothing problems and the method of generalized crossvalidation for solving them," inApplications of Statistics(P. R. Krishnaiah, Ed.). Amsterdam: NorthHolland, 1977.
[38] A. P. Witkin, "Scale space filtering," inProc. IJCAI(Karlsruhe, W. Germany), 1983, pp. 10191023.
[39] A. Yuille and T. Poggio, "Scaling theorems for zero crossings,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, no. 1, pp. 1525, 1986.