This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A Two-Stage Algorithm for Discontinuity-Preserving Surface Reconstruction
January 1992 (vol. 14 no. 1)
pp. 36-55

A two-stage algorithm for visual surface reconstruction from scattered data while preserving discontinuities is presented. The first stage consists of a robust local approximation algorithm (the moving least median of squares (MLMS) of error) to clean the data and create a grid from the original scattered data points. This process is discontinuity preserving. The second stage introduces a weighted bicubic spline (WBS) as a surface descriptor. The WBS has a factor in the regularizing term that adapts the behavior of the spline across discontinuities. The weighted bicubic approximating spline can approximate data with step discontinuities with no discernible distortion in the approximating surface. The combination of robust surface fitting and WBSs removes outliers and reduces Gaussian noise. Either stage by itself would not effectively remove both kinds of noise. Experimental results with the two-stage algorithm are presented.

[1] P. J. Rousseeuw and A. M. Leroy,Robust Regression&Outlier Detection. New York: Wiley, 1987.
[2] S. S. Sinha and B. G. Schunck, "A two-stage algorithm for discontinuity-preserving surface reconstruction," inProc. Workshop Robust Estimation(University of Maryland), July 1989.
[3] T. Poggio, "Early vision: From computational structure to algorithms and parallel hardware,"CVGIP, vol. 31, pp. 139-155, 1985.
[4] S. S. Sinha and B. G. Schunck, "Reverse engineeing: From prototype parts to CAD models," Tech. Rep. in preparation, A.I. Lab., EECS Dept., Univ. of Michigan, 1991.
[5] L. L. Schumaker, "Fitting surfaces to scattered data," inApproximation Theory II(G. G. Lorentz, C. K. Chui and L. L. Schumaker, Eds.). London and Orlando: Academic, 1979, pp. 203-268.
[6] R. D. Eastman and A. M. Waxman, "Using disparity functionals for stereo correspondence and surface reconstruction,"Comput. Vision, Graphics, Image Processing, vol. 39, pp. 73-101, 1987.
[7] B. G. Schunck, "Image flow segmentation and estimation by constraint line clustering,"IEEE Trans. Patt. Anal. Machine Intell., vol. 11, pp. 1010-1027, October 1989.
[8] W. E. L. Grimson,From Images to Surfaces: A Computational Study of the Human Early visual System. Cambridge, MA: MIT Press, 1981.
[9] D. Terzopoulos, "The computation of visible surface representations,"IEEE Trans. Patt. Anal. Machine Intell., vol. 10, pp. 417-438, July 1988.
[10] P. Lancaster and K. Salkauskas,Curve and Surface Fitting. New York: Academic, 1986.
[11] H. Inoue, "A least-squares smooth fitting for irregularly spaced data: Finite-element approach using the cubic B-spline basis,"Geophys., vol. 51, pp. 2051-2066, Nov. 1986.
[12] S. S. Sinha and P. J. Besl, "Principal patches: A viewpoint invariant surface description," inProc. IEEE Int. Conf. Robotics Automat., 1990.
[13] P. J. Besl and R. C. Jain, "Segmentation through variable-order surface fitting,"IEEE Trans. Patt. Anal. Machine Intell., vol. 10, pp. 167-192, Mar. 1988.
[14] R. L. Kashyap and K. Eom, "Robust image models and their applications," inAdvances in Electronics and Electron Physics. Academic, 1988.
[15] P. J. Huber,Robust Statistics. New York: Wiley, 1981.
[16] C. de Boor,A Practical Guide to Splines. Berlin: Springer-Verlag, 1978.
[17] W. J. J. Rey,Introduction to Robust and Quasi-Robust Statistical Methods. Berlin: Springer-Verlag, 1983.
[18] P. J. Besl, J. B. Birch, and L. T. Watson, "Robust window operators,"Machine Vision Applications, vol. 2, no. 4, pp. 179-191, 1989.
[19] A. C. Bovik, T. S. Huang, and D. C. Munson, "The effect of median filtering on edge estimation and detection,"IEEE Trans. Patt. Anal. Machine Intell., vol. 9, pp. 181-194, Mar. 1987.
[20] R. Kumar and A. R. Hanson, "Robust estimation of camera location and orientation from noisy data having outliers," inProc. Workshop Interpretation of 3D Scene, Austin, TX, 1989, pp. 52-60.
[21] D. Y. Kim, J. J. Kim, P. Meer, D. Mintz, and A. Rosenfeld, "Robust computer vision: A least median of squares based approach," inProc. DARPA Image Understanding Workshop, 1989.
[22] T. Poggio, V. Torre, and C. Koch, "Computational vision and regularization theory,"Nature, vol. 317, pp. 314-319, 1985.
[23] H. G. Barrow and J. M. Tenenbaum, "Recovering intrinsic scene characteristics from images," inComputer Vision Systems(A. R. Hanson and E. M. Riseman, Eds.). New York: Academic, 1979.
[24] D. Terzopoulos, "Computing visible surface reconstruction," Memo 800, Artificial Intell. Lab., Mass. Inst. Technol., Cambridge, MA, 1985.
[25] T. E. Boult and J. R. Kender, "Visual surface reconstruction using sparse depth data," inProc. Conf. Comput. Vision Patt. Recogn., 1986, pp. 68-76.
[26] A. Blake and A. Zisserman, "Invariant surface reconstruction using weak continuity constraints," inProc. Conf. Comput. Vision Patt. Recogn., 1986.
[27] J. Duchon, "Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces,"R. A. I. R. O. Analyse Mathematique, vol. 10, pp. 5-12, 1976.
[28] R. Franke, "Recent advances in the approximation of surfaces from scattered data," inTopics in Multivariate Approximation(C. K. Chui, L. L. Schumaker, and F. I. Utreras, Eds.), 1987, pp. 79-98.
[29] R. Franke, "Scattered data interpolation: Tests of some methods,"Math. Computation, vol. 38, pp. 181-200, Jan. 1982.
[30] R. Franke and L. L. Schumaker, "Bibliography of multivariate approximation," inTopics in Multivariate Approximation(C. K. Chui, L. L. Schumaker, and F. I. Utreras, eds.), 1987, pp. 275-335.
[31] D. Terzopoulos, "Multilevel computational processes for visual surface reconstruction,"Comput. Vision Graphics Image Processing, vol. 24, pp. 52-96, 1983.
[32] J. Meinguet, "Surface spline interpolation: Basic theory and computational aspects," inApproximation Theory and Spline Functions(S. P. Singh, J. W. H. Burry, and B. Watson, eds.), 1984, pp. 127-142.
[33] A. N. Tikhonov and V. Y. Arsenin,Solutions of Ill-Posed Problems. New York: V. H. Winston, 1977.
[34] D. Terzopoulos, "Regularization of inverse visual problems involving discontinuities,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 4, pp. 413-424, July 1986.
[35] R. Franke, "Thin plate splines with tension,"Computer Aided Geometric Design, vol. 2, pp. 87-95, 1985.
[36] A. Cline, "Scalar and planar valued curve fitting using splines under tension,"Commun. Assoc. Comput. Machinery, vol. 17, pp. 218-223, 1974.
[37] A. Blake, "Reconstructing a visible surface," inProc. Nat. Conf. Artificial Intell., 1984, pp. 23-26.
[38] G. Wahba, "Surface fitting with scattered noisy data on Euclidean D-space and on the sphere,"Rocky Mountain J. Math., vol. 14, no. 1, pp. 281-299, 1984.
[39] J. H. Alhberg, E. N. Nilson, and J. L. Walsh,The Theory of Splines and Their Applications. London and Orlando: Academic, 1967.
[40] K. Salkauskas, "C1splines for interpolation of rapidly varying data,"Rocky Mountain J. Math., vol. 14, no. 1, pp. 239-250, 1974.
[41] E. J. Wegman and I. W. Wright, "Splines in statistics,"J Amer. Stat. Assoc., vol. 78, pp. 351-365, June 1983.
[42] S. S. Sinha, "Principal patches: A viewpoint invariant surface description," Tech. Rep., Comput. Sci. Dept., General Motors Res. Labs., 1988.
[43] J. G. Hayes and J. Halliday, "The least squares fitting of cubic spline surfaces to general data sets,"J. Inst. Math. Applications, vol. 14, pp. 89-103, 1974.
[44] D. G. McCaughey and H. C. Andrews, "Image approximation by variable knot bicubic splines,"IEEE Trans. Patt. Anal. Machine Intell., vol. 3, pp. 299-309, May 1981.
[45] S. E. Stead, "Estimation of gradients from scattered data,"Rocky Mountain J. Math., vol. 14, no. 1, pp. 265-279, 1984.
[46] G. Golub, "Numerical methods for solving linear least squares problems,"Numerische Mathematik, vol. 7, no. 3, pp. 206-216, 1965.
[47] Geomod User's Guide, I.D.E.A.S.Cincinnati, OH: Structural Dynamics, 1986.
[48] S. W. Thomas, "Scattered thoughts on B-splines," Comput. Sci. Dept., Univ. of Utah, 1988.
[49] G. H. Golub and C. F. V. Loan,Matrix Computations. Baltimore, MD: Johns Hopkins University Press, 1989.
[50] W. Hackbusch and U. Trottenberg, Eds.,Multigrid Methods II, Lecture Notes in Mathematics 1228. New York, Springer-Verlag, 1986; inProc. Conf.(Cologne, FRG), Oct. 1985.
[51] D. Terzopoulos, "Image analysis using multigrid relaxation methods,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 129-139, Mar. 1986.
[52] G. Dahlquist and A. Bjorck,Numerical Methods. Englewood Cliffs, LA NJ: Prentice-Hall, 1974.
[53] T. E. Boult, "Reproducing kernels for visual surface interpolation," Rep. CUCS-186-85, Dept. of Comput. Sci., Columbia Univ., 1985.
[54] T. A. Foley, "Weighted bicubic spline interpolation to rapidly varying data,"ACM Trans. Graphics, vol. 6, pp. 1-18, Jan. 1987.
[55] S. Moezzi and T. E. Weymouth, "A computational model for dynamic stereo vision," inProc. Int. Conf. Robotics Automat.(Cincinatti, OH), May 1990.
[56] K. Skifstad and R. Jain, "Range estimation from intensity gradient analysis," inProc. Int. Conf. Robotics Automat., 1989, pp. 43-48.
[57] W. Hoff and N. Ahuja, "Extracting surfaces from stereo images: An integrated approach," inInt. Conf. Comput. Vision, 1987.
[58] S. S. Sinha, S. Moezzi, and B. G. Schunck, "Robust stereo vision," inProc. S.P.I.E. Optics Illum. Image Sensing Machine Vision V(Boston, MA), vol. 1385, 1990.
[59] W. E. L. Grimson, "Surface consistency constraints in vision,"Comput. Vision Graphics Image Processing, vol. 24, pp. 28-51, 1983.
[60] W. E. L. Grimson, "An implementation of a computational theory of visual surface interpolation,"Comput Vision Graphics Image Processing, vol. 22, pp. 39-69, 1983.
[61] S. S. Sinha and B. G. Schunck, "Discontinuity-preserving surface reconstruction in vision processing," inProc. Conf. Comput. Vision Patt. Recogn., 1989.

Index Terms:
least squares approximations; picture processing; two-stage algorithm; discontinuity-preserving surface reconstruction; discontinuities; moving least median of squares; weighted bicubic spline; robust surface fitting; least squares approximations; picture processing; splines (mathematics)
Citation:
S. Sinha, B.G. Schunck, "A Two-Stage Algorithm for Discontinuity-Preserving Surface Reconstruction," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 1, pp. 36-55, Jan. 1992, doi:10.1109/34.107012
Usage of this product signifies your acceptance of the Terms of Use.