
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
H.L. Tan, S.B. Gelfand, E.J. Delp, "A Cost Minimization Approach to Edge Detection Using Simulated Annealing," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 1, pp. 318, January, 1992.  
BibTex  x  
@article{ 10.1109/34.107010, author = {H.L. Tan and S.B. Gelfand and E.J. Delp}, title = {A Cost Minimization Approach to Edge Detection Using Simulated Annealing}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {14}, number = {1}, issn = {01628828}, year = {1992}, pages = {318}, doi = {http://doi.ieeecomputersociety.org/10.1109/34.107010}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  A Cost Minimization Approach to Edge Detection Using Simulated Annealing IS  1 SN  01628828 SP3 EP18 EPD  318 A1  H.L. Tan, A1  S.B. Gelfand, A1  E.J. Delp, PY  1992 KW  picture processing; pattern recognition; cost minimization; edge detection; simulated annealing; weighted cost factors; localization; thinness; pattern recognition; signal processing; simulated annealing VL  14 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
The authors cast edge detection as a problem in cost minimization. This is achieved by the formulation of a cost function that evaluates the quality of edge configurations. The function is a linear sum of weighted cost factors. The cost factors capture desirable characteristics of edges such as accuracy in localization, thinness, and continuity. Edges are detected by finding the edge configurations that minimize the cost function. The authors give a mathematical description of edges and analyze the cost function in terms of the characteristics of the edges in minimum cost configurations. Through the analysis, guidelines are provided on the choice of weights to achieve certain characteristics of the detected edges. The cost function is minimized by the simulated annealing method. A set of strategies is presented for generating candidate states and to devise a suitable temperature schedule.
[1] A. Rosenfeld and A. Kak,Digital Picture Processing, New York: Academic, 1976.
[2] V. Torre and T. A. Poggio, "On edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, pp. 147163, Mar. 1986.
[3] T. Peli and D. Malah, "A study of edge detection algorithms,"Comput. Graphics Image Processing, vol. 20, pp. 121, 1982.
[4] F. M. Dickey and K. S. Shanmugam, "Optimum edge detection filter,"Appl. Optics, vol. 16, no. 1, pp. 145148, Jan. 1977.
[5] J. F. Canny, "A computational approach to edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, pp. 679697, 1986.
[6] D. Marr and E. Hildreth, "Theory of edge detection," inProc. Royal Soc. London, 1980, pp. 187217, pp. 187217.
[7] R. M. Haralick, "Digital step edges from zero crossing of second directional derivatives,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI6, no. 1, pp. 5868, Jan. 1984.
[8] V. S. Nalwa and T. O. Binford, "On detecting edges,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, pp. 699714, 1986.
[9] D. Mumford and J. Shah, "Boundary detection by minimizing functionals," inProc. IEEE Comput. Vision Patt. Recogn. Conf.(San Francisco), 1985, pp. 2226.
[10] A. Blake and A. Zisserman,Visual Reconstruction. Cambridge, MA: MIT Press, 1987.
[11] A. Martelli, "An application of heuristic search methods to edge and contour detection,"Commun. ACM, vol. 19, no. 2, pp. 7383, Feb. 1976.
[12] G. P. Ashkar and J. W. Modestino, "The contour extraction problem with biomedical applications,"Comput. Graphics Image Processing, vol. 7, pp. 331355, 1978.
[13] P. H. Eichel and E. J. Delp, "Sequential edge detection in correlated random fields," inProc. IEEE Comput. Vision Patt. Recogn. Conf.(San Francisco), June 1985, pp. 1421.
[14] E. J. Delp and C. H. Chu, "Detecting edge segments,"IEEE Trans. Syst. Man Cybern., vol. SMC15, no. 1, pp. 144152, Jan. 1985.
[15] P. H. Eichel, E. J. Delp, K. Koral, and A. J. Buda," "A method for fully automatic definition of coronary arterial edges from cineangiograms,"IEEE Trans. Med. Imaging, vol. 7, no. 4, pp. 313320, Dec. 1988.
[16] A. Rosenfeld,Image Modeling. New York: Academic, 1981.
[17] S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the bayesian restoration of images,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI6, no. 6, pp. 721741, Nov. 1984.
[18] J. L. Marroquin, "Probablistic solution of inverse problems," Ph.D. thesis, Dept. of Elect. Eng. Comput. Sci., Mass. Inst. Technol., 1985.
[19] B. Gidas, "A renormalization group approach to image processing problems,"IEEE Trans. Patt. Anal. Machine Intell., vol. 11, pp. 164180, Feb. 1989.
[20] S. Lakshmanan and H. Derin, "Simultaneous parameter estimation and segmentation of Gibbs random fields using simulated annealing,"IEEE Trans. Patt. Anal. Machine Intell., vol. 11, no. 8, pp. 799813, Aug. 1989.
[21] D. Geman, S. Geman, C. Graffigne, and P. Dong, "Boundary detection by constrained optimization,"IEEE Trans. Patt. Anal. Machine Intell., vol. 12, no. 7, pp. 609628, July 1990.
[22] B. Hajek, "Cooling schedules for optimal annealing,"Math. Oper. Res., vol. 13, no. 2, pp. 311329, May 1988.
[23] B. J. Schachter, A. Lev, S. W. Zucker, and A. Rosenfeld, "An application of relaxation methods to edge reinforcement,"IEEE Trans. Syst. Man Cybern., vol. SMC7, no. 11, pp. 813816, Nov. 1977.
[24] R. Hummel and S. W. Zucker, "On the foundations of relaxation labeling processes,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI5, pp. 267287, 1983.
[25] D. Marr,Vision. New York: W. H. Freeman, 1982.
[26] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing,"Sci., vol. 220, no. 4598, pp. 671680, May 13, 1983.
[27] C. C. Skiscim and B. L. Golden, "Optimization by simulated annealing: A preliminary computational study for the TSP," inProc. 1983 Winter Simulation Conf., 1983, pp. 523535.
[28] A. A. El Gamal, L. A. Hemachandra, I. Shperling, and V. K. Wei, "Using simulated annealing to design good codes,"IEEE Trans. Inform. Theory, vol. IT33, no. 1, pp. 116123, Jan. 1987.
[29] P. Carnevali, L. Coletti, and S. Patarnello, "Image processing by simulated annealing,"IBM J. Res. Develop., vol. 29, no. 6, pp. 569579, Nov. 1985.
[30] D. Mitra, F. Romeo, and A. SangiovanniVincentelli, "Convergence and finitetime behavior of simulated annealing,"Advances Appl. Probability, vol. 18, pp. 747771, 1986.
[31] S. B. Gelfand and S. K. Mitter, "Analysis of simulated annealing for optimization," inProc. 24th Conf. Decision Contr.(Ft. Lauderdale, FL), Dec. 1985, pp. 779786.
[32] B. Gidas, "Nonstationary markov chains and convergence of the annealing algorithm,"J. Stat. Phys., vol. 39, nos. 1/2, pp. 73131, 1985.
[33] H. L. Tan, "Edge detection by cost minimization," Ph.D. thesis, School of Elect. Eng., Purdue Univ., West Lafayette, IN, Dec. 1988.
[34] L. Kitchen and A. Rosenfeld, "Edge evaluation using local edge coherence,"IEEE Trans. Syst. Man Cybern., vol. SMC11, no. 9, pp. 597605, Sept. 1981.
[35] H. L. Tan, S. B. Gelfand, and E. J. Delp, "A cost minimization approach to edge detection using simulated annealing," inProc. IEEE Comput. Vision Patt. Recogn. Conf.(San Diego), June 1989, pp. 8691.