
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
H. Kaindl, R. Shams, H. Horacek, "Minimax Search Algorithms With and Without Aspiration Windows," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 12, pp. 12251235, December, 1991.  
BibTex  x  
@article{ 10.1109/34.106996, author = {H. Kaindl and R. Shams and H. Horacek}, title = {Minimax Search Algorithms With and Without Aspiration Windows}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {13}, number = {12}, issn = {01628828}, year = {1991}, pages = {12251235}, doi = {http://doi.ieeecomputersociety.org/10.1109/34.106996}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Minimax Search Algorithms With and Without Aspiration Windows IS  12 SN  01628828 SP1225 EP1235 EPD  12251235 A1  H. Kaindl, A1  R. Shams, A1  H. Horacek, PY  1991 KW  minimax search algorithms; aspiration windows; exact minimax values; game trees; backward pruning; uniform distribution; linear space complexity; alphabeta search; computational complexity; game theory; minimax techniques; search problems; trees (mathematics) VL  13 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
Investigation of several algorithms for computing exact minimax values of game trees (utilizing backward pruning) are discussed. The focus is on trees with an ordering similar to that actually found in game playing practice. The authors compare the algorithms using two different distributions of the static values, the uniform distribution and a distribution estimated from practical data. A systematic comparison of using aspiration windows for all of the usual minimax algorithms is presented. The effects of aspiration windows of varying size and position are analyzed. Increasing the ordering of moves to near the optimum results in unexpectedly high savings. Algorithms with linear space complexity benefit most. Although the ordering of the first move is of predominant importance, that of the remainder has only secondorder effects. The use of an aspiration window not only makes alphabeta search competitive, but there also exist dependencies of its effects on certain properties of the trees.
[1] G. Baudet, "The design and analysis of algorithms for asynchronous multiprocessors," Ph.D. dissertation, Dep. Comput. Sci., CarnegieMellon Univ., Pittsburgh, PA, Apr. 1978.
[2] M. S. Campbell and T. A. Marsland, "A comparison of minimax tree search algorithms,"Artificial Intell.vol. 20, no. 4, pp. 347367, 1983.
[3] J. Fishburn and R. A. Finkei, "Parallel alphabeta search on Arachne," Tech. Rep. 394, Dept. of Comput. Sci., Univ. Wisconsin, Madison, July, 1980.
[4] J. Gaschnig, "Performance measurement and analysis of certain search algorithms," Ph.D. thesis, CarnegieMellon Univ., Comput. Sci. Dept., Pittsburgh, PA, 1979.
[5] J. Gillogly, "Performance analysis of the technology chess program," Ph.D. thesis, Comput. Sci. Dept., CarnegieMellon Univ., Pittsburgh, PA, Mar., 1978.
[6] H. Kaindl, "Searching to variable depth in computer chess," inProc. IJCAI83(Karlsruhe), Aug. 1983, pp. 760762.
[7] H. Kaindl, "Useful statistics from tournament programs,"J. Int. Comput. Chess Assoc., vol. 11, no. 4, pp. 156159, 1988.
[8] H. Kaindl,Problemlösen durch heuristische Suche in der Artificial Intelligence. Vienna: SpringerVerlag, 1989.
[9] H. Kaindl, "Tree Searching Algorithms," inComputers, Chess, and Cognition(T. A. Marsland and J. Schaeffer, Eds.). New York: SpringerVerlag, 1990, pp. 133158.
[10] H. Kaindl, M. Wagner, and H. Horacek, "Comparing various pruning algorithms on very strongly ordered game trees," inProc. Workshop New Directions in GameTree Search(Edmonton, Canada), May, 1989, pp. 111120; a comprehensive version is available as Tech. Rep. 50, Dept. Stat. Comput. Sci., Univ. of Vienna, Jan. 1988.
[11] D. E. Knuth and R. W. Moore "An analysis of alphabeta pruning,"Artificial Intell.vol. 6, no. 4, pp. 293326, 1975.
[12] R. E. Korf, "Depthfirst iterative deepening: An optimal admissible tree search,"Artificial Intell., vol. 25, pp. 97109, 1985.
[13] T. A. Marsland, "Relative efficiency of alphabeta implementations," inProc. IJCAI83(Karlsruhe), Aug. 1983, pp. 763766.
[14] T. A. Marsland and M. S. Campbell, "Parallel search of strongly ordered game trees,"ACM Comput. Surv., vol. 14, no. 4, pp. 533552, 1982.
[15] T. A. Marsland, A. Reinefeld, and J. Schaeffer, "Low overhead alternatives to SSS*,"Artificial Intell., vol. 31, no. 2, pp. 185199, 1987.
[16] A. Musczycka and R. Shinghal, "An empirical comparison of pruning strategies in game trees,"IEEE Trans. Syst. Man Cybern., vol. SMC15, no. 3, pp. 389399, 1985.
[17] J. Pearl, "Asymptotic properties of minimax trees and gamesearching procedures,"Artificial Intell., vol. 14, no. 2, pp. 113138, 1980.
[18] J. Pearl,Heuristics: Intelligent Search Strategies for Computer Problem Solving. Reading, Mass: AddisonWesley, 1984.
[19] A. Reinefeld, "An improvement of the SCOUT tree search algorithm,"J. Int. Comput. Chess Assoc., vol. 6, no. 4, pp. 414, 1983.
[20] A. Reinefeld,SpielbaumSuchverfahren. Berlin: SpringerVerlag, 1989.
[21] J. Schaeffer, "Experiments in search and knowledge," Ph.D. dissertation, Univ. of Waterloo, Canada, May 1986.
[22] J. Schaeffer, "The history heuristic and alphabeta search enhancements in practice,"IEEE Trans. Patt. Anal. Machine Intell.vol. 11, no. 11, pp. 12031212, 1989.
[23] R. Shams, "Ein experimenteller Vergleich ausgewählter Suchverfahren," Diplomarbeit, Inst. Praktische Inform., Technische Univ. Wien, 1990.
[24] R. Shams, H. Kaindl, and H. Horacek, "Using aspiration windows for minimax algorithms," inProc. IJCAI91(Sydney, Australia), Aug. 1991, pp. 192197.
[25] G. C. Stockman, "A minimax algorithm better than alphabeta?"Artificial Intell., vol. 12, no. 2, pp. 179196, 1979.