
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
R.P. Wildes, "Direct Recovery of ThreeDimensional Scene Geometry From Binocular Stereo Disparity," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 761774, August, 1991.  
BibTex  x  
@article{ 10.1109/34.85667, author = {R.P. Wildes}, title = {Direct Recovery of ThreeDimensional Scene Geometry From Binocular Stereo Disparity}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {13}, number = {8}, issn = {01628828}, year = {1991}, pages = {761774}, doi = {http://doi.ieeecomputersociety.org/10.1109/34.85667}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Direct Recovery of ThreeDimensional Scene Geometry From Binocular Stereo Disparity IS  8 SN  01628828 SP761 EP774 EPD  761774 A1  R.P. Wildes, PY  1991 KW  picture processing; pattern recognition; threedimensional scene geometry; binocular stereo disparity; stereo disparity field; surface geometry; natural image; geometry; pattern recognition; picture processing VL  13 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
An analysis of disparity is presented. It makes explicit the geometric relations between a stereo disparity field and a differentially project scene. These results show how it is possible to recover threedimensional surface geometry through firstorder (i.e., distance and orientation of a surface relative to an observer) and binocular viewing parameters in a direct fashion from stereo disparity. As applications of the analysis, algorithms have been developed for recovering threedimensional surface orientation and discontinuities from stereo disparity. The results of applying these algorithms to natural image binocular stereo disparity information are presented.
[1] P. Anandan, "A unified perspective on computational techniques for the measurement of visual motion" inProc. Int. Conf. Computer Vision, 1987, pp. 462472.
[2] S. T. Barnard and M. A. Fischler, "Computational stereo,"Comput. Surveys, vol. 14, no. 4, pp. 553572, 1982.
[3] A. Blake and A. Zisserman,Visual Reconstruction. Cambridge, MA: MIT Press, 1987.
[4] T. E. Boult, "Reproducing kernels for surface interpolation," Columbia Univ., New York, NY, A.I. Memo, 1987.
[5] J. M. Brady, J. Ponce, A. Yuille, and H. Asada, "Describing surfaces," Massachusetts Inst. Technol., Cambridge, A.I. Memo 822, 1985.
[6] J. F. Canny, "A computational approach to edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, pp. 679697, 1986.
[7] W. F. Clocksin, "Perception of surface slant and edge labels from optical flow,"Perception, vol. 9, pp. 253269, 1980.
[8] G. Dahlquist andÅ. Björk,Numerical Methods. Englewood Cliffs, NJ: PrenticeHall, 1974.
[9] R. D. Eastman and A. M. Waxman, "Using disparity functionals for stereo correspondence and surface reconstruction,"Comput. Vision, Graphics, Image Processing, vol. 39, pp. 73101, 1987.
[10] W. E. L. Grimson,From Images to Surfaces. Cambridge, MA: MIT Press, 1981.
[11] W. E. L. Grimson and T. Pavlidis, "Discontinuity detection for visual surface reconstruction,"Comput. Vision, Graphics, Image Processing, vol. 30, pp. 316330, 1985.
[12] J. G. Harris, "The coupled depth slope approach to surface reconstruction," inProc. Int. Conf. Computer Vision, 1987, pp. 277283.
[13] W. Hoff and N. Ahuja, "Extracting surfaces from stereo images," inProc. Int. Conf. Computer Vision, 1987, pp. 284294.
[14] B. K. P. Horn, "Relative orientation,"Int. J. Computer Vision, vol. 4, no. 1, pp. 5978, 1990.
[15] K. Kanatani, "Structure from motion without correspondence: General principle," inProc. Int. Joint Conf. Artificial Intelligence, 1985, pp. 886888.
[16] C. Koch, J. Marroquin, and A. Yuille, "Analog 'Neural' Networks in Early Vision," Massachusetts Inst. Technol., Cambridge, A.I. Memo 751, 1985.
[17] J. J. Koenderink and A. J. van Doorn, "Geometry of binocular vision and a model for stereopsis,"Biol. Cybern., vol. 21, pp. 2935, 1976.
[18] J. J. Koenderink and A. J. van Doorn, "Local structure of movement parallax of the plane,"J. Opt. Soc. Amer., vol. 66, no. 7, pp. 717723, 1976.
[19] G. A. Korn and T. M. Korn,Mathematical Handbook for Scientists and Engineers, New York: McGrawHill, 1961.
[20] D. Lee and T. Pavlidis, "Onedimensional regularization with discontinuities," inProc. Int. Conf. Computer Vision, 1987, pp. 572577.
[21] H. C. LonguetHiggins and K. Pradzny, "The interpretation of a moving retinal image,"Proc. Roy. Soc. London B, vol. 208, pp. 385397, 1980.
[22] Manual of Photogrammetry. Washington, DC: Amer. Soc. Photogrammetry (no author or editor named), 1966.
[23] J. L. Marroquin, "Surface reconstruction preserving discontinuities," Massachusetts Inst. Technol., Cambridge, A.I. Memo 792, 1984.
[24] J. E. W. Mayhew and H. C. LonguetHiggins, "A computational model of binocular depth perception,"Nature, vol. 297, pp. 376378, 1982.
[25] G. Medioni and R. Nevatia, "Description of threedimensional surfaces using curvature properties," inProc. DARPA Image Understanding Workshop, 1984, pp. 219229.
[26] K. M. Mutch and W. B. Thompson, "Analysis of accretion and deletion at boundaries in dynamic scenes,"IEEE Trans. Pattern Anal. Machine Intell., vol. 7, no. 2, pp. 133138, 1985.
[27] K. Pradzny, "Egomotion and relative depth map from optical flow,"Biol. Cybern.vol. 36, pp. 87102, 1980.
[28] B. Schunk, "The motion constraint equation for optical flow," inProc. Int. Joint Conf. Pattern Recognition, 1986, pp. 2022.
[29] S. Siegel,Nonparametric statistics. New York: McGrawHill, 1956.
[30] T. Smitley and R. Bajcsy, "Stereo processing of aeriel urban images," inProc. Int. Joint Conf. Pattern Recognition, 1984, pp. 405409.
[31] K. A. Stevens and A. Brookes, "Depth reconstruction in stereopsis," inProc. Int. Conf. Computer Vision, 1987, pp. 549603.
[32] M. Subbarao, "Interpretation of image flow,"Int. J. Comput. Vision, vol. 2, no. 1, pp. 7796, 1988.
[33] D. Terzopoulos, "Regularization of inverse visual problems involving discontinuities,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, no. 4, pp. 413424, July 1986.
[34] D. Terzopoulos, "Integrating visual information from multiple sources," inFrom Pixels to Predicates, S. Pentland, Ed. Norwood, NJ: Ablex, 1986.
[35] W. B. Thompson, K. M. Mutch, and V. A. Berzins, "Edge detection in optical flow fields," inProc. Amer. Assoc. Artificial Intelligence, 1985, pp. 2629.
[36] W. B. Thompson, K. M. Mutch, and V. A. Berzins, "Dynamic occlusion analysis in optical flow fields,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI7, no. 4, pp. 374383, 1985.
[37] C. Truesdell and R. A. Toupin, "The classical field theories," inHandbuch der Physik, S. Flügge, Ed. Berlin: SpringerVerlag, 1960.
[38] A. Waxman and S. Ullman, "Surface structure and threedimensional motion from image flow kinematics,"Int. J. Robotics Res., vol. 4, no. 3, pp. 7294, 1985.
[39] D. Weinshall, "Qualitative depth and shape from stereo in agreement with psychophysical evidence,"Massachusetts Inst. Technol., Cambridge, A.I. Memo 1007, 1987.
[40] R. P. Wildes, "On interpreting stereo disparity," Massachusetts Inst. Technol., Cambridge, A.I. Lab. Tech. Rep. 1112, 1989.
[41] Y. Yeshurun and E. L. Schwartz, "Cepstral filtering on a columnar image architecture: A fast algorithm for binocular stereo segmentation,"IEEE Trans. Pattern Anal. Machine Intell., vol. 11, no. 7, pp. 759767, 1989.