This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
On the Localization Performance Measure and Optimal Edge Detection
December 1990 (vol. 12 no. 12)
pp. 1186-1190

The localization performance measure of edge detectors is addressed. A one-dimensional formulation of the problem is considered. A linear space-invariant filter is used for the detection. The locations of local maxima in the thresholded output of the filter are declared to be the edges. The limitations of conventional performance measures are shown, and a localization performance measure for edge detection is suggested. This performance measure is based on the theory of zero-crossings of stochastic processes. It is shown that the derivative of a Gaussian is the optimal edge detector for the measure.

[1] V. Torre and T. A. Poggio, "On edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 147-163, Mar. 1986.
[2] T. Poggio, H. Voorhees, and A. Yuille, "A regularized solution to edge detection,"J. Complexity, vol. 4, pp. 106-123, 1988.
[3] J. F. Canny, "A computational approach to edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 679-697, 1986.
[4] W. K. Pratt,Digital Image Processing. New York: Wiley, 1978.
[5] I. E. Abdou and W. K. Pratt, "Quantitative design and evaluation of enhancement/thresholding edge detectors,"Proc. IEEE, vol. 67, no. 5, pp. 753-763, May 1979.
[6] M. A. Gennert, "Detecting half edges and vertices in images,"Comput. Vision Pattern Recognition, 1986.
[7] V. S. Nalwa and T. O. Binford, "On detecting edges,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 699-714, 1986.
[8] R. M. Haralick, "Digital step edges from zero crossing of second directional derivatives,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, no. 1, pp. 58-68, Jan. 1984.
[9] K. S. Shanmugam, F. M. Dickey, and J. A. Green, "An optimal frequency domain filter for edge detection in digital pictures,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-1, no. 1, pp. 37-49, Jan. 1979.
[10] D. Marr and E. C. Hildreth, "Theory of edge detection,"Proc. Roy. Soc. London B, vol. 207, pp. 187-217, 1980.
[11] W. H. H. J. Lunscher and M. P. Beddoes, "Optimal edge detector design I: Parameter selection and noise effects,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-8, pp. 164-177, 1986.
[12] W. H. H. J. Lunscher and M. P. Beddoes, "Optimal edge detectol design II: Coefficient quantization,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-8, pp. 178-187, 1986.
[13] S. O. Rice, "Mathematical analysis of random noise,"Bell Syst. Tech. J., vol. 24, pp. 75-149, 1945.
[14] A. Papoulis,Probability, Random Variables and Stochastic Processes. New York: McGraw-Hill, 1965.
[15] M. R. Leadbetter, G. Lindgren, and H. Rootzen,Extremes and Related Properties of Random Sequences and Processes. New York: Springer-Verlag, 1983.
[16] A. Hersokovits and T. O. Binford, "On boundary detection," M.I.T. A.I. Lab., Cambridge, MA, AI Lab Memo 183, 1970.

Index Terms:
pattern recognition; localization performance measure; edge detection; linear space-invariant filter; local maxima; zero-crossings; stochastic processes; filtering and prediction theory; optimisation; pattern recognition; picture processing; stochastic processes
Citation:
H.D. Tagare, R.J.P. deFigueiredo, "On the Localization Performance Measure and Optimal Edge Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 12, pp. 1186-1190, Dec. 1990, doi:10.1109/34.62607
Usage of this product signifies your acceptance of the Terms of Use.