This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Fast Surface Interpolation Using Hierarchical Basis Functions
June 1990 (vol. 12 no. 6)
pp. 513-528

An alternative to multigrid relaxation that is much easier to implement and more generally applicable is presented. Conjugate gradient descent is used in conjunction with a hierarchical (multiresolution) set of basis functions. The resultant algorithm uses a pyramid to smooth the residual vector before the direction is computed. Simulation results showing the speed of convergence and its dependence on the choice of interpolator, the number of smoothing levels, and other factors are presented. The relationship of this approach to other multiresolution relaxation and representation schemes is also discussed.

[1] W. E. L. Grimson, "An implementation of a computational theory of visual surface interpolation,"Comput. Vision, Graphics, Image Processing, vol. 22, pp. 39-69, 1983.
[2] T. Poggio, V. Torre, and C. Koch, "Computational vision and regularization theory,"Nature, vol. 317, pp. 314-319, 1985.
[3] D. Terzopoulos, "Regularization of inverse visual problems involving discontinuities,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 4, pp. 413-424, July 1986.
[4] A. Witkin, D. Terzopoulos, and M. Kass, "Signal matching through scale space,"Int. J. Comput. Vision, vol. 1, pp. 133-144, 1987.
[5] L. Matthies, T. Kanade, and R. Szeliski, "Kalman filter-based algorithms for estimating depth from image sequences,"Int. J. Comput. Vision, vol. 3, pp. 209-236, 1989.
[6] J. L. Potter, Ed.,The Massively Parallel Processor. Cambridge, MA: M.I.T. Press, 1985.
[7] W. D. Hillis,The Connection Machine. Cambridge, MA: MIT Press, 1985.
[8] W. Hackbusch,Multigrid Methods and Applications. Berlin: Springer-Verlag, 1985.
[9] D. Terzopoulos, "Image analysis using multigrid relaxation methods,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 129-139, Mar. 1986.
[10] D. J. Choi, "Solving the depth interpolation problem on a fine grained, mesh- and tree-connected SIMD machine," inProc. Image Understanding Workshop, Los Angeles, CA, Feb. 1987. Los Altos, CA: Morgan Kaufmann, 1987, pp. 639-643.
[11] T. Simchony, R. Chellappa, and Z. Lichtenstein, "Pyramid implementation of optimal step conjugate search algorithms for some computer vision problems,"Proc. Second Int. Conf. Computer Vision (ICCV'88), Tampa, FL, Dec. 1988. Washington, DC: IEEE Computer Society Press, 1988, pp. 580-590.
[12] H. Yserentant, "On the multi-level splitting of finite element space,"Numerische Mathimatik, vol. 49, pp. 379-412, 1986.
[13] A. Rosenfeld, Ed.,Multiresolution Image Processing and Analysis. New York: Springer-Verlag, 1984.
[14] D. Terzopoulos, A. Witkin, and M. Kass, "Symmetry-seeking models and 3D object reconstruction,"Int. J. Comput. Vision, vol. 1, no. 3, pp. 211-221, Oct. 1987.
[15] D. Terzopoulos, "Concurrent multilevel relaxation," inProc. Image Understanding Workshop, L. S. Baumann, Ed., Miami Beach, FL, Dec. 1985. Science Applications Int. Corp., 1985, pp. 156-162.
[16] R. Szeliski and D. Terzopoulos, "Parallel multigrid algorithms and applications to computer vision," inProc. Fourth Copper Mountain Conf. Multigrid Methods, Copper Mountain, CO, Apr. 1989. Philadelphia, PA: Soc. Industrial and Applied Mathematics, 1989, pp. 383-398.
[17] D. Terzopoulos, "Multilevel computational processes for visual surface reconstruction,"Comput. Vision, Graphics, Image Processing, vol. 24, pp. 52-96, 1983.
[18] A. Blake and A. Zisserman,Visual Reconstruction. Cambridge, MA: MIT Press, 1987.
[19] D. Terzopoulos, "The computation of visible-surface representations,"IEEE Trans. Pattern Anal. Machine Intell., vol. 10, no. 4, pp. 417-438, July 1988.
[20] D. Marr, "Representing visual information," inComputer Vision Systems, A. R. Hanson and E. M. Riseman, Eds. New York: Academic, 1978, pp. 61-80.
[21] B. K. P. Horn and B. G. Schunck, "Determining optical flow,"Artif. Intell., vol. 17, pp. 185-203, 1981.
[22] K. Ikeuchi and B. K. P. Horn, "Numerical shape from shading and occluding boundaries,"Artif. Intell., vol. 17, pp. 141-184, 1981.
[23] J. H. Ahlberg, E. N. Nilson, and J. L. Walsh,The Theory of Splines and Their Applications. New York: Academic, 1967.
[24] A. N. Tikhonov and V. Y. Arsenin,Solutions of Ill-Posed Problems. Washington, DC: Winston, 1977.
[25] R. Szeliski,Bayesian Modeling of Uncertainty in Low-Level Vision, Boston: Kluwer, 1989.
[26] J. L. Marroquin, "Surface reconstruction preserving discontinuities," Massachusetts Inst. Technol., Cambridge, A.I. Memo 792, 1984.
[27] Y. G. Leclerc, "Constructing simple stable descriptions for image partitioning,"Int. J. Comput. Vision, vol. 3, no. 1, pp. 75-104, 1989.
[28] H. Fuchs. Z. M. Kedem, and S. P. Uselton, "Optimal surface reconstruction from planar contours,"Commun. ACM, vol. 20, Oct. 1977.
[29] Z. J. Cendes and S. H. Wong, "C1quadratic interpolation over arbitrary point sets,"IEEE Comput. Graphics Applications, vol. 7, no. 11, pp. 8-16, Nov. 1987.
[30] T. E. Boult, "Information based complexity in non-linear equations and computer vision," Ph.D. dissertation, Columbia Univ., 1986.
[31] J. A. George and J. Liu,Computer Solution of Large Sparse Positive Definite Systems. Englewood Cliffs, NJ: Prentice-Hall, 1981.
[32] D. M. Young,Iterative Solution of Large Linear Systems. New York: Academic, 1971.
[33] D. Terzopoulos, "Multiresolution computation of visible-surface representations," Ph.D. dissertation, Massachusetts Inst. Technol., Jan. 1984.
[34] O. Axelsson and V. A. Barker,Finite Element Solution of Boundary Value Problems: Theory and Computation. Orlando, FL: Academic, 1984.
[35] W. L. Briggs,A Multigrid Tutorial. Philadelphia, PA: Soc. Industrial and Applied Mathematics, 1987.
[36] P. J. Burt and E.H. Adelson, "The Laplacian pyramid as a compact image code,"IEEE Trans. Commun., vol. COM-31, pp. 532-540, Apr. 1983.
[37] J. L. Crowley and R. M. Stern, "Fast computation of the difference of low-pass transform," Robotics Inst., Carnegie-Mellon Univ., Tech. Rep. CMU-RI-TR-82-18, Nov. 1982.
[38] W.H. Press et al.,Numerical Recipes--The Art of Scientific Computing, Cambridge University Press, 1986, p. 254.
[39] M. J. Hannah, "Test results from SRI's stereo system," inProc. Image Understanding Workshop, Cambridge, MA, Apr. 1988. Los Altos, CA: Morgan Kaufmann, 1988, pp. 740-744.
[40] R. Szeliski, "Fast parallel surface interpolation with applications to digital cartography," Artif. Intell. Center, SRI International, Tech. Note 470, June 1989.
[41] K.-J. Bathe and E. L. Wilson,Numerical Methods in Finite Element Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1976.
[42] O. McBryan, "The connection machine: PDE solution on 65,536 processors," Thinking Machines Corp., Cambridge, MA, Tech. Rep. NA86-3, 1986.
[43] S. G. Mallat, "A compact multiresolution representation: The wavelet model," inProc. IEEE Comput. Soc. Workshop Computer Vision, Miami Beach, FL, Dec. 1987. Washington, DC: IEEE Computer Society Press, 1987, pp. 2-7.
[44] R. Szeliski, "Fast shape from shading," inFirst European Conf. Computer Vision, Antibes, France, Apr. 1990.
[45] C. H. Stapper, "Correlation analysis of particle clusters on integrated circuit wafers,"IBM J. Res. Develop., vol. 31, pp. 641-650, Nov. 1987.

Index Terms:
conjugate gradient; picture processing; surface interpolation; hierarchical basis functions; multigrid relaxation; convergence; smoothing levels; convergence of numerical methods; interpolation; picture processing; relaxation theory
Citation:
R. Szeliski, "Fast Surface Interpolation Using Hierarchical Basis Functions," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 6, pp. 513-528, June 1990, doi:10.1109/34.56188
Usage of this product signifies your acceptance of the Terms of Use.