
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
P. Smets, "The Combination of Evidence in the Transferable Belief Model," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 5, pp. 447458, May, 1990.  
BibTex  x  
@article{ 10.1109/34.55104, author = {P. Smets}, title = {The Combination of Evidence in the Transferable Belief Model}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {12}, number = {5}, issn = {01628828}, year = {1990}, pages = {447458}, doi = {http://doi.ieeecomputersociety.org/10.1109/34.55104}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  The Combination of Evidence in the Transferable Belief Model IS  5 SN  01628828 SP447 EP458 EPD  447458 A1  P. Smets, PY  1990 KW  open world; evidence; transferable belief model; belief functions; closedworld assumption; Dempster's rule; cognitive systems; probability VL  12 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
A description of the transferable belief model, which is used to quantify degrees of belief based on belief functions, is given. The impact of open and closedworld assumption on conditioning is discussed. The nature of the frame of discernment on which a degree of belief will be established is discussed. A set of axioms justifying Dempster's rule for the combination of belief functions induced by two distinct evidences is presented.
[1] J. A. Barnett, "Computational methods for a mathematical theory of evidence," inProc. Seventh Int. Joint Conf. Artificial Intelligence, Vancouver, B.C., 1981, pp. 868875.
[2] S. Bernstein,Leçon Sur les Propriétés Extrémales et la Meilleure Approximation des Fonctions Analytiques d'une Variable Réelle. Paris: GauthierVillars, 1926.
[3] B. G. Buchanan and E. H. Shortliffe, Eds.,RuleBased Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Reading, MA: AddisonWesley, 1984.
[4] G. Choquet, "Theory of capacities,"Ann. de l'Institut Fourier, Univ. Grenoble, vol. 5, pp. 131296, 1953.
[5] A. P. Dempster, "Upper and lower probabilities induced by a multiplevalued mapping,"Ann. Math. Statist., vol. 38, pp. 325339, 1967.
[6] A. P. Dempster, "A generalization of Bayesian inference,"J. Roy Statist. Soc., vol. B30, pp. 205247, 1968.
[7] D. Dubois, H. Farreny, and H. Prade, "Sur divers problèmes inhérentsàl'automatisation des raisonnements de sens common," inAFCET 1985, 5ème Congrès, Grenoble, tome 1, 1985, pp. 321328.
[8] D. Dubois and H. Prade,Fuzzy Sets and Systems: Theory and Applications. New York: Academic, 1980.
[9] D. Dubois and H. Prade,Theorie des Possibilités. Paris: Masson, 1985.
[10] T. Fine,Theories of Probability. New York: Academic, 1973.
[11] T. D. Garvey, J. D. Lowrance, and M, A. Fischler, "An inference technique for integrating knowledge from disparate sources," inProc. Seventh Int. Joint Conf. Artificial Intelligence, Vancouver, B.C., 1981, pp. 319325.
[12] I. J. Good,Probability and Weighting of Evidence. New York: Hafner, 1950.
[13] J. Gordon and E. H. Shortliffe, "The DempsterShafer theory of evidence," inRuleBased Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project, B. G. Buchanan and E. H. Shortliffe, Eds. Reading, MA: AddisonWesley, 1984, pp. 272 292.
[14] J. Gordon and E.H. Shortliffe, "A method for managing evidential reasoning in a hierarchical hypothesis space,"Artificial Intell., vol. 26, pp. 323357, 1985.
[15] D. Kahneman, P. Slovic, and A, Tversky,Judgement under Uncertainty: Heuristics and Biases. Cambridge, England: Cambridge University Press, 1982.
[16] L. Kanal and V. Kumar,Search in Artificial Intelligence. New York: SpringerVerlag. 1988.
[17] D. V. Lindley, "Scoring rules and the inevitability of probability,"Int. Statist. Rev., vol. 50, pp. 126, 1982.
[18] J. D. Lowrance, "Dependencygraph models of evidential support," Dep. COINS, Univ. Massachusetts, Tech. Rep. 8226, 1982.
[19] P. Magrez, "Modèles de raisonnement approchès, "Doctoral dissertation, Univ. Libre de Bruxelles, Bruxelles, Belgium, 1985.
[20] E. H. Mamdani and B. R. Gaines, Eds.,Fuzzy Reasoning and Its Applications. New York: Academic, 1981.
[21] B. H. P. Rivett, "Behavioural problems of utility theory," inThe Role and Effectiveness of Theories of Decision in Practice, D. J. White and K. C. Bowen, Eds. London: Hodder and Stoughton, 1975, pp. 2127.
[22] B. Schweizer and A. Sklar, "Associative functions and statistical triangle inequalities,"Publ. Math. Debrecen, vol. 8, pp. 169186, 1961.
[23] B. Schweizer and A. Sklar, "Associative functions and abstract semigroups,"Publ. Math. Debrecen, vol. 10, pp. 6981, 1963.
[24] B. Schweizer and A. Sklar,Probabilistic Metric Spaces. New York: NorthHolland, 1983.
[25] G. Shafer,A Mathematical Theory of Evidence. Princeton, NJ: Princeton University Press, 1976.
[26] G. Shafer, "Nonadditive probabilities in the work of Bernoulli and Lambert,"Arch. History Exact Sci.," vol. 19, pp. 309370, 1978.
[27] G. Shafer, "Belief functions and parametric models,"J. Roy, Statist. Soc., vol. B44, pp. 322352, 1982.
[28] G. Shafer, "Lindley's paradox,"J. Amer, Statist. Assoc., vol. 77, pp. 325351, 1982.
[29] G. Shafer, "The combination of evidence," School of Business, Univ. Kansas, Working Paper 162, 1984.
[30] G. Shafer and A. Tversky, "Languages and designs for probability judgment,"Cognitive Sci., vol. 9, pp. 309339, 1985.
[31] E. H. Shortliffe and B. G. Buchanan, "A model of inexact reasoning in medicine,"Math. Biosci., vol. 23, pp. 351379, 1975.
[32] E. H. Shortliffe,Computer Based Medical Consultations: MYCIN. New York: American Elsevier, 1976.
[33] P. Smets, "Un modèle mathématicostatistique simulant le processus du diagnostic médical," Doctoral dissertation, Univ. Libre de Bruxelles, Bruxelles, Belgium, 1978 (available through University Microfilm International, 3032 Mortimer Street, London W1N 7RA, thesis 8070,003).
[34] P. Smets, "Modèle quantitatif du diagnostic médical,"Bull. de l'Académie Royale de Médecine de Belgique, vol. 134, pp. 330343, 1979.
[35] P. Smets, "Medical diagnosis: Fuzzy sets and degree of belief,"Fuzzy Sets Syst., vol. 5, pp. 259266, 1981.
[36] P. Smets, "The degree of belief in a fuzzy event,"Inform. Sci., vol. 25, pp. 119, 1981.
[37] P. Smets, "Combining nondistinct pieces of evidence," inProc. NAFIP86, New Orleans, LA, 1986, pp. 544548.
[38] P. Smets, "Belief functions and Bayes theorem," inArtificial Intelligence and Expert Systems, D. Chorafas and A. Rowe, Berlin: AMK, 1987.
[39] P. Smets, "'Bayes' theorem generalized for belief functions," inProc. ECAI86, vol. II, 1986, pp. 169171.
[40] P. Smets, "Belief functions," inNonstandard Logics for Automated Reasoning, P. Smets, A. Mamdani, D. Dubois, and H. Prade, Eds. London: Academic, 1988, pp. 253286.
[41] P. Smets, "Constructing the pignistic probability function in a context of uncertainty," inProc. Fifth Workshop Uncertainty in AI, Windsor, Canada, 1989, pp. 319326.
[42] C. A. B. Smith, "Consistency in statistical inference and decision,"J. Roy. Statist. Soc., vol. B23, pp. 137, 1961.
[43] T. M. Stratt, "Continuous belief functions for evidential reasoning," inProc. Fourth Nat. Conf. Artificial Intelligence, Austin, TX, 1984, pp. 308313.
[44] S. Weber, "A general concept of fuzzy connectives, negations and implications based on tnorms and tconorms,"Fuzzy Sets Syst., vol. 11, pp. 115134, 1983.
[45] R. R. Yager, "On the DempsterShafer framework and new combination rules," Machine Intell. Inst., Iona College, Tech. Rep. MII504, 1985.
[46] L. Zadeh, "Fuzzy sets as a basis for a theory of possibility,"Fuzzy Sets Syst., vol. 1, pp. 328, 1978.
[47] L. Zadeh, "A mathematical theory of evidence (book review),"AI Mag., vol. 5, no. 3, pp. 8183, 1984.