This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Edge-Labeling Using Dictionary-Based Relaxation
February 1990 (vol. 12 no. 2)
pp. 165-181

An improved application of probabilistic relaxation to edge labeling is presented. The improvement derives from the use of a representation of the edge process that is internally consistent and which utilizes a more complex description of edge structure. The application uses a dictionary to represent permitted labelings of the entire context-conveying neighborhood of each pixel. Details are given of the dictionary approach and the related representation of the edge process. A comparison with other edge-postprocessing strategies is provided.

[1] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, "Scene labeling by relaxation operations,"IEEE Trans. Syst., Man, Cybern., vol. SMC-6, pp. 420-433, 1976.
[2] J. Kittler and J. Illingworth, "Relaxation labeling algorithms--A review,"Image Vision Comput., vol. 3, no. 4, pp. 206-216, 1985.
[3] J. Kittler and E. R. Hancock, "Combining evidence in probabilistic relaxation,"Int. J. Pattern Recognition Artificial Intell., vol. 3, pp. 29-52, 1989.
[4] O. D. Faugeras and M. Berthod, "Improving consistency and reducing ambiguity in stochastic labeling: An optimization approach,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-3, pp. 412- 424, 1981.
[5] R. A. Hummel and S. W. Zucker, "On the foundations of relaxation labeling processes,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-5, pp. 267-287, 1983.
[6] J. Kittler and E. R. Hancock, "Contextual decision rule for region analysis,"Image Vision Comput., vol. 5, pp. 145-155, 1987.
[7] E. R. Hancock and J. Kittler, "A list-driven contextual decision rule," inProc. 5th Scandinavian Conf. Image Analysis, vol. 2, 1987, pp. 555-562.
[8] S. W. Zucker, R. A. Hummel, and A. Rosenfeld, "An application of relaxation labeling to line and curve enhancement,"IEEE Trans. Comput., vol. C-26, pp. 394-403, 1977.
[9] L. A. Spacek, "Edge detection and motion detection,"Image Vision Comput., vol. 4, p. 43, 1986.
[10] S. Peleg and A. Rosenfeld, "Determining compatibility coefficients for curve enhancement relaxation processes,"IEEE Trans. Syst., Man, Cybern., vol. SMC-8, pp. 548-555, 1978.
[11] J. Hilditch, "Linear skeletons form square cupboards,"Machine Intell., vol. 6, pp. 403-420, 1969.
[12] J. Kittler, "Compatibility and support functions in probabilistic relaxation," inProc. 8th ICPR, Paris, 1986.
[13] R. Linger and H. Mills, "A Case Study in Cleanroom Software Engineering: the IBM COBOL Structuring Facility,"Proc. Compsac, IEEE CS Press, Los Alamitos, Calif., 1988, pp. 10-17.
[14] J. Kittler, "Relaxation labeling," inPattern Recognition Theory and Practice, P. A. Devijver and J. Kittler, Eds. Hiedelberg: Springer-Verlag, 1987.
[15] J. Kittler, J. Illingworth, J. Föglein, and K. Paler, "An automatic thresholding algorithm and its performance," inProc. 7th ICPR, Montreal, 1984.
[16] J. F. Canny, "Finding lines and edges in images," Artificial Intell. Lab., Massachusetts Inst. Technol., Tech. Rep. TM-720, 1983.
[17] J. F. Canny, "A computational approach to edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 679-697, 1986.
[18] V. S. Nalwa and T. O. Binford, "On detecting edges,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 699-714, 1986.
[19] D. Marr and E. Hildreth, "Theory of edge-detection," inProc. Roy. Soc. London, vol. B207, pp. 187-212, 1980.
[20] R. M. Haralick and L. T. Watson, "A facet model for image data,"Comput. Vision, Graphics, Image Processing, vol. 15, pp. 113-129, 1981.
[21] D. L. Waltz, "Understanding line drawings of scenes with shadows," inThe Psychology of Computer Vision, P. H. Winston, Ed. New York: McGraw-Hill, 1975.
[22] S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions and Bayesian restoration of images,"IEEE Trans. Pattern. Anal. Machine Intell., vol. PAMI-6, pp. 721-741, 1984.
[23] H. Derin, H. Elliot, R. Cristi, and D. Geman, "Bayes smoothing algorithms for segmentation of binary images modeled by Markov random fields,"IEEE Trans. Pattern. Anal. Machine Intell., vol. PAMI-6, pp. 707-720, 1984.
[24] F. R. Hansen and H. Elliot, "Image segmentation using simple Markov random fields,"Comput. Vision, Graphics, Image Processing, vol. 20, pp. 101-132, 1982.
[25] R. M. Haralick and J. S. J. Lee, "Context dependent edge-detection," inProc. 9th ICPR, Rome, vol. 1, 1989, pp. 203-207.
[26] J. E. Besag, "On the statistical analysis of dirty pictures,"J. Roy. Stat. Soc., series B, to appear.

Index Terms:
picture processing; pattern recognition; dictionary-based relaxation; probabilistic relaxation; edge labeling; edge structure; pixel; pattern recognition; picture processing; probability
Citation:
E.R. Hancock, J. Kittler, "Edge-Labeling Using Dictionary-Based Relaxation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 2, pp. 165-181, Feb. 1990, doi:10.1109/34.44403
Usage of this product signifies your acceptance of the Terms of Use.