This Article 
 Bibliographic References 
 Add to: 
Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations
February 1990 (vol. 12 no. 2)
pp. 131-147

A method for recovery of compact volumetric models for shape representation of single-part objects in computer vision is introduced. The models are superquadrics with parametric deformations (bending, tapering, and cavity deformation). The input for the model recovery is three-dimensional range points. Model recovery is formulated as a least-squares minimization of a cost function for all range points belonging to a single part. During an iterative gradient descent minimization process, all model parameters are adjusted simultaneously, recovery position, orientation, size, and shape of the model, such that most of the given range points lie close to the model's surface. A specific solution among several acceptable solutions, where are all minima in the parameter space, can be reached by constraining the search to a part of the parameter space. The many shallow local minima in the parameter space are avoided as a solution by using a stochastic technique during minimization. Results using real range data show that the recovered models are stable and that the recovery procedure is fast.

[1] D. H. Ballard and C. M. Brown,Computer Vision. Englewood Cliffs, NJ: Prentice-Hall, 1982.
[2] R. Bajcsy and F. Solina, "Three dimensional shape representation revisited," inProc. First Int. Computer Vision Conf., London, England, 1987, pp. 231-241.
[3] R. Bajcsy and S. Kovacic, "Multiresolution elastic matching,"Comput. vision Graphics Image Processing, vol. 46, pp. 1-21, 1989.
[4] A. H. Barr, "Superquadrics and angle-preserving transformations,"IEEE Comput. Graphics Applicat., vol. 1, pp. 11-23, 1981.
[5] A. H. Barr, "Global and local deformations of solid primitives,"Comput. Graphics, vol. 18, no. 3, pp. 21-30, 1984.
[6] I. Biederman, "Human image understanding: Recent research and theory,"Comput. Vision, Graphics, Image Processing, vol. 32, pp. 29-73, 1985.
[7] R. C. Bolles and P. Horaud, "3DPO: A three dimensional part orientation svstem,"Int. J. Robotics Res., vol. 5, no. 3, Fall 1986, pp. 3-26.
[8] T. E. Boult and A. D. Gross, "Recovery of superquadrics from depth information," inProc. Spatial Reasoning and Multi-Sensor Fusion Workshop, St. Charles, IL, 1987, pp. 128-137.
[9] A. Brandt, "Multi-level adaptive solutions to boundary-value problems,"Math. Computation, vol. 31, no. 138, pp. 333-390, 1977.
[10] R. A. Brooks, "Model-based 3-D interpretation of 2-D images,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-5, no. 2, pp. 140-150, 1983.
[11] J. A. Fodor,The Modularity of Mind, Cambridge, MA: M.I.T. Press, 1983.
[12] M. Gardiner, "The superellipse: A curve that lies between the ellipse and the rectangle,"Sci. Amer., vol. 213, pp. 222-234, 1965.
[13] E. H. Gombrich,Art and Illusion. Oxford, England: Phaidon. 1962.
[14] W. E. L. Grimson and T. Lozano-Perez, "Model-based recognition and localization from sparse range or tactile data,"Int. J. Robotics Res., vol. 3, no. 3, pp. 3-35, 1984.
[15] S. Harnad, "Category induction and representation," inCategorical Perception, S. Harnad, Ed. Cambridge, England: Cambridge University Press, 1986.
[16] B. K. P. Horn,Robot Vision. Cambridge, MA: M.I.T. Press, 1986.
[17] J. R. Kender and D. Freudenstein, "What is a 'degenerate view'?" inProc. DARPA Image Understanding Workshop, Los Angeles, CA, 1987, pp. 589-598.
[18] J. Koenderink and A. van Doorn, "The internal representation of solid shape with respect to vision,"Biol. Cybern., vol. 32, pp. 211-216, 1979.
[19] M. Leyton, "Nested structures of control: An intuitive view,"Comput. Vision, Graphics, Image Processing, vol. 37, pp. 20-53, 1987.
[20] D. Marr,Vision. San Francisco, CA: Freeman, 1982.
[21] L. R. Novick and B. Tversky, "Cognitive constructs on ordering operations: The case of geometric analogies,"J. Exp. Psychol. General, vol. 116, no. 1, pp. 50-67, 1987.
[22] R. Paul,Robot Manipulators. Cambridge, MA: M.I.T. Press, 1981.
[23] A. P. Pentland, "Perceptual organization and the representation of natural form,"Artificial Intell., vol. 28, no. 3, pp. 293-331, 1986.
[24] A. P. Pentland, "Recognition by parts," inProc. First Int. Computer Vision Conf., London, England, 1987.
[25] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vettering,Numerical Recipes. Cambridge, England: Cambridge University Press, 1986.
[26] K. Rao and R. Nevatia, "Computing volume descriptions from sparse 3-D data,"Int. J. Comput. Vision, vol. 2, no. 1, pp. 33-50, 1988.
[27] E. Rosch, "Principles of categorization," inCognition and Categorization, E. Rosch and B. Lloyd, Eds. Hillsdale, NJ: Erlbaum, 1987.
[28] A. Rosenfeld and A. Kak,Digital Picture Processing, New York: Academic, 1976.
[29] L. E. Scales,Introduction to Non-linear Optimization. New York: Springer-Verlag, 1985.
[30] F. Solina and R. Bajcsy, "Range image interpretation of mail pieces with superquadrics, " inProc. AAAI-87, Seattle, WA, 1987, pp. 733- 737.
[31] G. Strang,Linear Algebra and its Applications. Orlando, FL: Academic, 1980.
[32] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, "Elastically deformable models."Comput. Graphics, vol. 21, no. 4, pp. 205-214, July 1987.
[33] D. Terzopoulos, A. Witkin, and M. Kass, "Symmetry-seeking models for 3D object reconstruction,"Int. J. Comput. Vision, vol. 1, no. 3, 1988.
[34] G. Tsikos, "Segmentation of 3-D scenes using multi-modal interaction between machine vision and programmable mechanical scene manipulation," Ph.D. dissertation, Univ. Pennsylvania, Philadelphia, 1987.
[35] B. Tversky and K. Hemenway, "Objects, parts, and categories,"J. Exp. Psychol.: General, vol. 113, no. 2, pp. 169-193, 1984.
[36] P. H. Winston, T. O. Binford, B. Katz, and M. Lowry, "Learning physical description from functional descriptions, examples, and precedents," inProc. AAAI-83, Washington, DC, 1983, pp. 433- 439.
[37] A. P. Witkin and J. M. Tenenbaum, "On the role of structure in vision," inHuman and Machine Vision, J. Beck, B. Hope, and A. Rosenfeld, Eds. New York: Academic, 1983.
[38] A. Witkin, K. Fleischer, and A.H. Barr, "Energy Constraints on Parameterized Models,Computer Graphics(Proc. SIGGRAPH). Vol. 21, No. 3, July 1987, pp. 225-232.

Index Terms:
parametric models recovery; picture processing; range images; superquadrics; global deformations; shape representation; computer vision; parametric deformations; least-squares minimization; parameter space; computer vision; iterative methods; minimisation; picture processing
F. Solina, R. Bajcsy, "Recovery of Parametric Models from Range Images: The Case for Superquadrics with Global Deformations," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 2, pp. 131-147, Feb. 1990, doi:10.1109/34.44401
Usage of this product signifies your acceptance of the Terms of Use.