This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Feature Point Correspondence in the Presence of Occlusion
January 1990 (vol. 12 no. 1)
pp. 87-91

Occlusion and poor feature point detection are two of the main difficulties in the use of multiple frames for establishing correspondence of feature points. A formulation of the correspondence problem as an optimization problem is used to handle these difficulties. Modifications to an existing iterative optimization procedure for solving the formulation of the correspondence problem are discussed. Experimental results are presented to show the merits of the formulation.

[1] M. Asada and S. Tsuji, "Representation of three-dimensional motion in dynamic scenes,"Comput. Vision, Graphics, Image Processing, vol. 21, pp. 118-144, 1983.
[2] S. T. Barnard and W. B. Thompson, "Disparity analysis of images,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-2, pp. 333- 340, 1980.
[3] L. S. Dreschler and H.-H. Nagel, "Volumetric model and 3-D trajectory of a moving car derived from monocular TV-frame sequences of a street scene,"Comput. Vision, Graphics, Image Processing, vol. 20, pp. 199-228, 1982.
[4] M. Jenkin and J. Tsotsos, "Applying temporal constraints to the dynamic stereo problem,"CVGIP, vol. 33, pp. 16-32, 1986.
[5] J. M. Prager and M. A. Arbib, "Computing the optic flow: The MATCH algorithm and prediction,"Comput. Vision, Graphics, Image Processing, vol. 24, pp. 271-304, 1983.
[6] V. S. Ramachandran and S. M. Anstis, "The perception of apparent motion,"Sci. Amer., vol. 254, pp. 102-109, 1986.
[7] R. F. Rashid, "Towards a system for the interpretation of moving light display,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-2, pp. 574-581, 1980.
[8] I.K. Sethi and R. Jain, "Finding trajectories of feature points in a monocular image sequence,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, pp. 56-73, Jan. 1987.
[9] W. B. Thompson, R. L. Madarasz, J. K. Kearny, and K. M. Mutch, "Temporal constraints for estimating optic flow," inProc. PRIP Conf., Las Vegas, NV, pp. 252-255, 1982.
[10] S. Ullman,The Interpretation of Visual Motion. Cambridge, MA: M.I.T. Press, 1979.
[11] M. Yachida, M. Asada, and S. Tsuji, "Automatic analysis of moving images,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-3, pp. 12-19, 1981.
[12] O. A. Zuniga and R. Haralick, "Corner detection using facet model," inProc. CVPR Conf., 1983, pp. 30-37.

Index Terms:
pattern recognition; feature point correspondence; occlusion; feature point detection; multiple frames; iterative optimization; iterative methods; optimisation; pattern recognition
Citation:
V. Salari, I.K. Sethi, "Feature Point Correspondence in the Presence of Occlusion," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 87-91, Jan. 1990, doi:10.1109/34.41387
Usage of this product signifies your acceptance of the Terms of Use.