This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Multichannel Texture Analysis Using Localized Spatial Filters
January 1990 (vol. 12 no. 1)
pp. 55-73

A computational approach for analyzing visible textures is described. Textures are modeled as irradiance patterns containing a limited range of spatial frequencies, where mutually distinct textures differ significantly in their dominant characterizing frequencies. By encoding images into multiple narrow spatial frequency and orientation channels, the slowly varying channel envelopes (amplitude and phase) are used to segregate textural regions of different spatial frequency, orientation, or phase characteristics. Thus, an interpretation of image texture as a region code, or carrier of region information, is emphasized. The channel filters used, known as the two-dimensional Gabor functions, are useful for these purposes in several senses: they have tunable orientation and radial frequency bandwidths and tunable center frequencies, and they optimally achieve joint resolution in space and in spatial frequency. By comparing the channel amplitude responses, one can detect boundaries between textures. Locating large variations in the channel phase responses allows discontinuities in the texture phase to be detected. Examples are given of both types of texture processing using a variety of real and synthetic textures.

[1] B. Julesz and J. R. Bergen, "Textons, the fundamental elements in preattentive vision and perception of textures,"Bell Syst. Tech. J., vol. 62, pp. 1619-1645, 1983.
[2] B. Julesz, "Visual pattern discrimination,"IRE Trans. Inform. Theory, vol. IT-8, pp. 84-92, 1962.
[3] B. Julesz, "Experiments in the visual perception of texture,"Sci. Amer., vol. 232, pp. 34-43, 1975.
[4] M. Clark and A. C. Bovik, "Texture discrimination using a model of visual cortex," inProc. IEEE Int. Conf. Syst., Man, Cybern., Atlanta, GA, 1986.
[5] M. R. Turner, "Texture discrimination by Gabor functions,"Biolog. Cybern., vol. 55, pp. 71-82, 1986.
[6] M. Clark, A. C. Bovik, and W. S. Geisler, "Texture segmentation using a class of narrowband filters," inProc. Int. Conf. Acoustics, Speech, and Signal Processing, Apr. 1987, pp. 14.6.1-14.6.4.
[7] A. C. Bovik, M. Clark, and W. S. Geisler, "Computational texture analysis using localized spatial filtering," inProc. IEEE Comput. Soc. Workshop Comput. Vision, Miami Beach, FL, Dec. 1987.
[8] D. Gabor, "Theory of communication,"J. Inst. Elect. Eng., vol. 93, pp. 429-457, 1946.
[9] J. G. Daugman, "Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters,"J. Opt. Soc. Amer., vol. 2, pp. 1160-1169, 1985.
[10] R. N. Bracewell,The Fourier Transform and Its Applications. New York: McGraw-Hill, 1978.
[11] M. J. Bastiaans, "A sampling theorem for the complex spectrogram, and Gabor's expansion of a signal in Gaussian elementary signals,"Opt. Eng., vol. 20, pp. 594-598, 1981.
[12] M. J. Bastiaans, "Gabor's signal expansion and degrees of freedom of a signal," Opt. Acta, vol. 29, pp. 1223-1229, 1982.
[13] S. Marcelja, "Mathematical description of the responses of simple cortical cells,"J. Opt. Soc. Amer., vol. 70, DD. 1297-1300, 1980.
[14] W. K. Pratt,Digital Image Processing. New York: Wiley, 1978.
[15] W. H. H. J. Lunscher and M. P. Beddoes, "Optimal edge detector design I: Parameter selection and noise effects,"IEEE Trans. Patt. Anal. Machine Intell., vol. PAMI-8, pp. 164-177, 1986.
[16] D. Marr, vision. San Francisco, CA: W. H. Freeman, 1982.
[17] W. S. Geisler and D. B. Hamilton, "Sampling theory analysis of spatial vision,"J. Opt. Soc. Amer. A, vol. 3, pp. 62-70, 1986.
[18] P. Brodatz,Textures: A Photographic Album for Artists and Designers. New York: Dover, 1966.
[19] H. C. Nothdurft, "Orientation sensitivity and texture segmentation,"Vision Res., vol. 25, pp. 551-560, 1985.
[20] B. K. P. Horn,Robot Vision. Cambridge, MA: M.I.T. Press, 1986.
[21] V. Torre and T. A. Poggio, "On edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 147-163, Mar. 1986.
[22] D. Marr and E. Hildreth, "Theory of edge detection,"Proc. Roy. Soc. London B, vol. 207, pp. 187-217, 1980.
[23] V. Berzins, "Accuracy of Laplacian edge detectors,"Comput. Vision, Graphics, Image Processing, vol. 27, pp. 195-210, 1984.
[24] J. F. Canny, "Finding lines and edges in images," Artificial Intell. Lab., Massachusetts Inst. Technol., Tech. Rep. TM-720, 1983.
[25] M. D. Levine,Vision in Man and Machine. New York: McGraw-Hill, 1985.
[26] R. M. Haralick, K. Shanmugan, and I. Dinstein, "Textural features for image classification,"IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 610-621, Nov. 1973.
[27] R. M. Haralick, "Statistical and structural approaches to texture,"Proc. IEEE, vol. 67, pp. 786-804. 1979.
[28] S. W. Zucker and D. Terzopoulos, "Finding structure in co-occurence matrices for texture analysis,"Comput. Vision, Graphics, Image Processing, vol. 12, pp. 286-308, Mar. 1980.
[29] C. H. Chen, "A study of texture classification using spectral features," inProc. Int. Conf. Pattern Recognition, Munich, West Germany, Oct. 19-22, 1982.
[30] H. Wechsler, "Texture analysis--A survey,"Signal Processing, vol. 2, pp. 271-282, 1982.
[31] L. Van Gool, P. Dewaele, and A. Oosterlinck, "Texture analysis anno 1983,"Comput. Vision, Graphics, Image Processing, vol. 29, pp. 336-357, 1985.
[32] R. Bajcsy, "Computer description of textured surfaces," inProc. Int. Joint Conf. Artif. Intell., Stanford, CA, Aug. 20-23, 1973.
[33] R. Bajcsy and L. Lieberman, "Texture gradient as a depth cue,"Comput. Graphics Image Processing, vol. 5, pp. 52-67, Mar. 1976.
[34] O. D. Faugeras, "Texture analysis and classification using a human visual model," inProc. Int. Conf. Pattern Recogn., Kyoto, Japan, Nov. 7-10, 1978.
[35] K. I. Laws, "Textured image segmentation," Ph.D. dissertation, Dep. Eng., Univ. Southern California, 1980.
[36] M. Pietikainen, "On the use of hierarchically computed 'Mexican hat' features for texture discrimination," Cornput. Vision Lab., Univ. Maryland, College Park, Tech. Rep. TR-968, Nov. 1980.
[37] A. Ikonomopoloulos and M. Unser, "A directional filtering approach to texture discrimination," inProc. 7th Int. Conf. Pattern Recog., 1984.
[38] F. D'Astous and M. E. Jernigan, "Texture discrimination based on detailed measures for the power spectrum," inProc. 7th Int. Conf. Pattern Recog., 1984.
[39] H. Knutsson and G. H. Granlund, "Texture analysis using two-dimensional quadrature filters," inProc. IEEE Workshop Comput. Architect. Pattern Anal. Image Database Management, Oct. 12-14, 1983.
[40] J. M. Coggins and A. K. Jain, "A spatial filtering approach to texture analysis,"Pattern Recog. Lett., vol. 3, pp. 195-203, 1985.
[41] R. Wilson and M. Spann, "Finite prolate spheroidal sequences and their applications II: Image feature description and segmentation,"IEEE Trans. Pattern Anal. Machine Intell., vol. 10, pp. 193-203, Mar. 1988.
[42] M. Porat and Y. Y. Zeevi, "The generalized Gabor scheme of image representation in biological and machine vision,"IEEE Trans. Pattern Anal. Machine Intell., vol. 10, pp. 452-468, July 1988.
[43] J. G. Daugman, "Complete discrete 2-d Gabor transforms by neural networks tor image analysis and compression,IEEE Trans. Acoust. Speech Signal Proc., vol. 36, no. 7, pp. 1169-1179, 1988.
[44] T. C. Rearick, "A texture analysis algorithm inspired by a theory of preattentive vision," inProc. Int. Conf. Comput. Vision Patt. Recog., San Francisco, CA, 1985.
[45] H. Voorhees and T. Poggio, "Detecting textons and texture boundaries in natural images," inProc. First Int. Conf. Comput. Vision, London, England, June 8-11, 1987.
[46] D. H. Hubel and T. N. Weisel, "Receptive fields of single neurons in the cat's striate cortex,"J. Physiol. London, vol. 148, pp. 574- 591, 1959.
[47] D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex,"J. Physiol. London, vol. 160, pp. 106-154, 1962.
[48] F. W. Campbell and J. G. Robson, "Applications of Fourier analysis of the visibility of gratings,"J. Physiol. London, vol. 197, pp. 551- 556, 1968.
[49] A. Pantle and R. Sekular, "Contrast response of human visual mechanisms sensitive to orientation and direction of motion,"Vision Res., vol. 9, pp. 397-406, 1970.
[50] J. A. Movshon, I. D. Thompson, and D. J. Tolhurst, "Spatial summation in the receptive fields of simple cells in the cat's striate cortex,"J. Physiol. London, vol. 283, pp. 53-77, 1978.
[51] R. L. De Valois, D. G. Albrecht, and L. G. Thorell, "Cortical cells: Bar and edge detectors, or spatial frequency filters," inFrontiers in Visual Science, S. J. Cool and E. L. Smith, Eds. New York: Springer-Verlag, 1978.
[52] J. G. Daugman, "Two-dimensional spectral analysis of cortical receptive field profiles,"Vision Res., vol. 20, pp. 847-856, 1980.
[53] J. J. Kulikowski, S. Marcelja, and P. O. Bishop, "Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex,"Biol. Cybern., vol. 43, pp. 187-198, 1982.
[54] D. A. Pollen and S. F. Ronner, "Visual cortical neurons as localized spatial frequency filters,"IEEE Trans. Syst., Man, Cybern., vol. 13, pp. 907-916, 1983.
[55] M. A. Webster and R. L. De Valois, "Relationship between spatial-frequency and orientation tuning of striate-cortex cells,"J. Opt. Soc. Amer., vol. 2, pp. 1124-1132, 1985.
[56] D. G. Stork and H. R. Wilson, "Analysis of Gabor function descriptions of visual receptive fields,"Assoc. Res. Vision Opthal. Ann. Spring Meeting, Sarasota, FL, May 1988.
[57] D. A. Pollen and S. F. Ronner, "Phase relationships between adjacent simple cells in the visual cortex,"Science, vol. 212, pp. 1409- 1411, 1981.
[58] B. Julesz, "Textons, the elements of texture perception, and their interactions,"Nature, vol. 290, pp. 91-97, 1981.
[59] J. Beck, "Textural segmentation, second-order statistics, and textural elements,"Biol. Cybern., vol. 48, pp. 125-130, 1983.
[60] B. Julesz and T. Caelli, "On the limits of Fourier decompositions in visual texture perception,"Perception, vol. 8, pp. 69-73, 1979.
[61] B. Julesz, "Spatial nonlinearities in the instantaneous perception of textures with identical power spectra,"Phil. Trans. Roy. Soc. Lendon B, vol. 290, pp. 83-94, 1980.
[62] E. H. Adelson and J. R. Bergen, "Spatiotemporal energy models for the perception of motion,"J. Opt. Soc. Amer. A, vol. 2, pp. 284- 299, 1985.
[63] A. B. Watson and A. J. Ahumada, Jr., "Model of human visualmotion sensing,"J. Opt. Soc. Amer. A, vol. 2, pp. 322-341, 1985.
[64] D. J. Heeger, "Optical flow from spatiotemporal filters," inProc. First Int. Conf. Comput. Vision, 1987, pp. 181-190.

Index Terms:
pattern recognition; multichannel texture analysis; localized spatial filters; visible textures; irradiance patterns; encoding; region code; region information; two-dimensional Gabor functions; tunable orientation; radial frequency bandwidths; tunable center frequencies; joint resolution; channel amplitude responses; discontinuities; encoding; filtering and prediction theory; pattern recognition
Citation:
A.C. Bovik, M. Clark, W.S. Geisler, "Multichannel Texture Analysis Using Localized Spatial Filters," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 55-73, Jan. 1990, doi:10.1109/34.41384
Usage of this product signifies your acceptance of the Terms of Use.