
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
 
ASCII Text  x  
T.R. Reed, H. Wechsler, "Segmentation of Textured Images and Gestalt Organization Using Spatial/SpatialFrequency Representations," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 112, January, 1990.  
BibTex  x  
@article{ 10.1109/34.41379, author = {T.R. Reed and H. Wechsler}, title = {Segmentation of Textured Images and Gestalt Organization Using Spatial/SpatialFrequency Representations}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {12}, number = {1}, issn = {01628828}, year = {1990}, pages = {112}, doi = {http://doi.ieeecomputersociety.org/10.1109/34.41379}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Segmentation of Textured Images and Gestalt Organization Using Spatial/SpatialFrequency Representations IS  1 SN  01628828 SP1 EP12 EPD  112 A1  T.R. Reed, A1  H. Wechsler, PY  1990 KW  lowlevel vision; early vision; preattentive vision; pattern recognition; textured images; Gestalt organization; spatialfrequency representations; clustering; grouping; spectrogram; difference of Gaussians representation; Gabor representation; Wigner distribution; joint resolution; texture segmentation; pattern recognition; statistics VL  12 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
The generic issue of clustering/grouping is addressed. Recent research, both in computer and human vision, suggests the use of joint spatial/spatialfrequency (s/sf) representations. The spectrogram, the difference of Gaussians representation, the Gabor representation, and the Wigner distribution are discussed and compared. It is noted that the Wigner distribution gives superior joint resolution. Experimental results in the area of texture segmentation and Gestalt grouping using the Wigner distribution are presented, proving the feasibility of using s/sf representations for lowlevel (early, preattentive) vision.
[1] R. W. Ehrich and J. P. Foith, "A view of texture topology and texture description,"Comput. Graphics Image Processing, vol. 8, no. 2, pp. 174202, Oct. 1978.
[2] T. Pavlidis,Structural Pattern Recognition. New York: SpringerVerlag, 1977, ch. 4, pp. 6870.
[3] E. M. Gurari and H. Wechsler, "On the difficulties involved in the segmentation of pictures,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI4, no. 3, pp. 304306, May 1982.
[4] M. Wertheimer, "Principles of perceptual organization," inReadings in Perception, D. C. Beardslee and M. Wertheimer, Eds. Princeton NJ: Van Nostrand, 1958, pp. 115135.
[5] A. Gagalowicz, "A new method for texture field synthesis: Some applications to the study of human vision,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI3, no. 5, pp. 520533, Sept. 1981.
[6] B. Julesz and J. Bergen, "Textons, the fundamental elements in preattentive vision and perception of textures,"Bell Syst. Tech. J., vol. 62, no. 2, pp. 16191645, JulyAug. 1983.
[7] T. Caelli, "Three processing characteristics of visual texture segmentation,"Spatial Vision, vol. 1, no. 1, pp. 1930, 1985.
[8] R. W. Connors and C. A. Harlow, "A theoretical comparison of texture algorithms,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI2, no. 3, pp. 204222, May 1980.
[9] J. S. Weszka, C. R. Dyer, and A. Rosenfeld, "A comparison study of texture measures for terrain classification,"IEEE Trans. Syst., Man, Cybern., vol. 6, no. 4, pp. 269286, 1976.
[10] S. W. Zucker and P. Cavanagh, "Subjective figures and texture perception," Comput. Vision Robotics Lab., Dep. Elec. Eng., McGill Univ., Tech. Rep. TR852R, Feb. 1985.
[11] D. Gabor, "Theory of communication,"Proc. IEE, vol. 93, no. 26, pp. 429457, 1946.
[12] C. E. Shannon, "Communication in the presence of noise," inProc. IRE, vol. 37, pp. 1021, Jan. 1949.
[13] J. G. Daugman, "Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by twodimensional visual cortical filters,"J. Opt. Soc. Amer. A, vol. 2, no. 7, pp. 11601169, July 1985.
[14] R. Wilson and G. H. Granlund, "The uncertainty principle in image processing,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI 6, no. 6, pp. 758767, Nov. 1984.
[15] R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for image classification,"IEEE Trans. Syst., Man, Cybern., vol. 3, no. 1, pp. 610621, Nov. 1973.
[16] S. Geman and D. Geman, "Stoachstic relaxation, Gibbs distributions, and Bayesian restoration of images,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI6, no. 6, pp. 721741, Nov. 1984.
[17] H. Derin and H. Elliott, "Modeling and segmentation of noisy and textured images using Gibbs random fields,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI9, pp. 3955, Jan. 1987.
[18] F. H. C. Crick, D. C. Marr, and T. Poggio, "An information processing approach to understanding the visual cortex," M.I.T., A. I.
[19] A. B. Watson, "The cortex transform: Rapid computation of simulated neural images,"Comput. Vision, Graphics, Image Processing, vol. 39, pp. 311327, 1987.
[20] A. P. Ginsburg, "Specifying relevant spatial information for image evaluation and display design: An explanation of how we see certain objects,"Proc. SID, vol. 21, no. 3, pp. 219227, 1980.
[21] J. Beck, A. Sutter, and R. Ivry, "Spatial frequency channels and perceptual grouping in texture segregation,"Comput. Vision, Graphics, Image Processing, vol. 37, pp. 299325, 1987.
[22] L. Jacobson and H. Wechsler, "Joint spatial/spatialfrequency representation,"Signal Processing, vol. 14, no. 1, pp. 3768, Jan. 1988.
[23] J. B. Allen and L. R. Rabiner, "A unified approach to shorttime Fourier analysis and synthesis,"Proc. IEEE, vol. 65, no. 11, pp. 15581564, Nov. 1977.
[24] R. Bajcsy and L. Lieberman, "Texture gradient as a depth cue,"Comput. Graphics Image Processing, vol. 5, pp. 5267, 1976.
[25] A. P. Pentland, "Fractalbased description of natural scenes,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI6, no. 6, pp. 661 674, Nov. 1984.
[26] H. Wilson and S. C. Giese, "Threshold visibility of frequency gradient patterns,"Vision Res., vol. 17, pp. 11771190, 1977.
[27] A. P. Witkin, "Scalespace filtering," inProc. 8th Int. Joint Conf Artificial Intelligence, Karlsruhe, West Germany, Aug. 1983, pp. 10191022.
[28] C. H. Anderson, P. J. Burt, and G. S. van der Wal, "Change detection and tracking using pyramid transform techniques," inProc. SPIE/ Cambridge Int. Conf. Intelligent Robots and Computer Vision, Cambridge, MA, Sept. 1985, pp. 7278.
[29] A. Rosenfeld, "Some useful properties of pyramids," inMultiresolution Image Processing and Analysis, A. Rosenfeld, Ed. Berlin: SpringerVerlag, 1984.
[30] P. Meer, E. S. Baugher, and A. Rosenfeld, "Frequency domain analysis and synthesis of image pyramid generating kernels,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI9, pp. 512522, 1987.
[31] J. L. Crowley and A. C. Parker, "A representation for shape based on peaks and ridges in the difference of lowpass transform,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI6, no. 2, pp. 156 170, Mar. 1984.
[32] D. Marr,Vision. New York: Freeman, 1982, p. 64.
[33] M. Porat and Y. Y. Zeevi, "The generalized Gabor scheme of image representation in biological and machine vision,"IEEE Trans. Pattern Anal. Machine Intell., vol. 10, no. 4, pp. 452468, July 1988.
[34] M. Clark, A. C. Bovik, and W. S. Geisler, "Texture segmentation using a class of narrowband filters," inProc. Int. Conf. Acoustics, Speech, and Signal Processing, Apr. 1987, pp. 14.6.114.6.4.
[35] J. J. Kulikowski, S. Marcelja, and P. O. Bishop, "Theory of spatial position and spatial frequency relations in the receptive fields of simple cells in the visual cortex,"Biol. Cybern., vol. 43, pp. 187198, 1982.
[36] D. A. Pollen and S. F. Ronner, "Phase relationships between adjacent simple cells in the visual cortex,"Science, vol. 212, pp. 1409 1411, 1981.
[37] E. Wigner, "On the quantum correction for thermodynamic equilibrium,"Phys. Rev., vol. 40, pp. 749759, June 1932.
[38] J. Ville, "Theorie et applications de la notion de signal analytique,"Cable et Transmission, vol. 2, no. 1, pp. 6174, 1948.
[39] T. A. C. M. Claasen and W. F. G. Mecklenbrauker, "The Wigner distributionA tool for timefrequency signal analysis, Part I: Continuoustime signals,"Philips J. Res., vol. 35, no. 3, pp. 217250, 1980.
[40] T. A. C. M. Claasen and W. F. G. Mecklenbrauker, "The Wigner distributionA tool for timefrequency signal analysis, Part II: Discretetime signals,"Philips J. Res., vol. 35, no. 4/5, pp. 276300, 1980.
[41] T. A. C. M. Claasen and W. F. G. Mecklenbrauker, "The Wigner distributionA tool for timefrequency signal analysis, Part III: Relations with other timefrequency signal transformations,"Philips J. Res., vol. 35, no. 6, pp. 372389, 1980.
[42] H. O. Bartelt, K. H. Brenner, and A. W. Lohmann, "The Wigner distribution function and its optical production,"Opt. Commun., vol. 32, no. 1, pp. 3238, Jan. 1980.
[43] M. J. Bastiaans, "The Wigner distribution function applied to optical signals and systems,"Opt. Commun., vol. 25, no. 1, pp. 2630, Apr. 1978.
[44] M. J. Bastiaans, "Wigner distribution function and its application to firstorder optics,"J. Opt. Soc. Amer., vol. 69, no. 12, pp. 17101716, Dec. 1979.
[45] L. Jacobson and H. Wechsler, "A paradigm for invariant object recognition of brightness, optical flow and binocular disparity images,"Pattern Recognition Lett., vol. 1, pp. 6168, Oct. 1982.
[46] L. Jacobson and H. Wechsler, "A theory for invariant object recognition in the frontoparallel plane,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI6, no. 3, pp. 325331, May 1984.
[47] L. Jacobson and H. Wechsler, "Derivation of optical flow using a spatiotemporalfrequency approach,"Comput. Vision, Graphics, Image Processing, vol. CVGIP38, pp. 2965, 1987.
[48] A. V. Oppenheim and J. S. Lim, "The importance of phase in signals,"Proc. IEEE, vol. 69, pp. 529541, 1981.
[49] W. Martin and P. Flandrin, "Analysis of nonstationary processes: Shorttime periodigrams versus a pseudoWigner estimator," inEUSIPCO83, H. Schussler, Ed. Amsterdam, The Netherlands: NorthHolland, 1983, pp. 455458.
[50] W. Martin, "Measuring the degree of nonstationarity by using the WignerVille spectrum," inProc. Int. Conf. Acoustics, Speech, and Signal Processing, San Diego, CA, Mar. 1921 1984, pp. 41B.3 41B.4.
[51] W. Martin and P. Flandrin, "Detection of changes of signal structure by using the WignerVille spectrum,"Signal Processing, vol. 8, no. 2, pp. 215233, 1985.
[52] T. R. Reed and H. Wechsler, "Tracking of nonstationarities for texture fields,"Signal Processing, vol. 14, no. 1, pp. 95102, Jan. 1988.
[53] L. Cohen, "Generalized phasespace distribution functions,"J. Math. Phys., vol. 7, no. 5, pp. 781786, May 1966.
[54] W. Martin and P. Flandrin, "WignerVille spectral analysis of nonstationary processes,"IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP33, no. 6, pp. 14611470, Dec. 1985.
[55] G. F. BoudreauxBartels and T. W. Parks, "Reducing aliasing in the Wigner distribution using implicit spline interpolation," inProc. Int. Conf. Acoustics, Speech, and Signal Processing83, Boston, MA, Apr. 1983, pp. 14381441.
[56] F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform,"Proc. IEEE, vol. 66, no. 1, pp. 5183, Jan. 1978.
[57] J. F. Kaiser, "Nonrecursive digital filtering using theI0sinhwindow function," inProc. IEEE Int. Symp. Circuit Theory, 1974, pp. 20 23.
[58] R. Wilson, "Finite prolate spheroidal sequences and their applications I: generation and properties,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI9, no. 6, pp. 787795, Nov. 1987.
[59] A. Rosenfeld, "Iterative methods in image analysis,"Pattern Recognition, vol. 10, pp. 181187, 1978.
[60] P. Brodatz,TexturesA Photographic Album for Artists and Designers. New York: Dover, 1966.
[61] J. Beck, "Textural segmentation, secondorder statistics, and textural elements,"Biol. Cybern., vol. 48, pp. 125130, 1983.
[62] D. Terzopoulos, "Image analysis using multigrid relaxation methods,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI8, pp. 129139, Mar. 1986.
[63] F. P. Preparata and M. I. Shamos,Computational Geometry, an Introduction. New York: SpringerVerlag, 1985.
[64] A. Treisman, "Preattentive processing in vision,"Comput. Vision, Graphics, Image Processing, vol. 31, pp. 156177, 1985.
[65] L. Jánez, "Visual grouping without low spatial frequencies "Vision Res., vol. 24, no. 3, pp. 271274, 1984.