This Article 
 Bibliographic References 
 Add to: 
A Nonparametric Method for Fitting a Straight Line to a Noisy Image
September 1989 (vol. 11 no. 9)
pp. 998-1001

In fitting a straight line to a noisy image, the least-squares method becomes highly unreliable either when the noise distribution is nonnormal or when it is contaminated by outliers. The authors propose a nonparametric method, the median of the intercepts, to overcome these difficulties. This method is free of assumptions about the noise distribution and insensitive to outliers, and it does not require quantization of the parameter space. Thus, unlike the Hough transform, its outcome does not depend on the bin size. The method is efficient and its implementation does not involve practical difficulties such as local minima or poor convergence of iterative procedures.

[1] R. O. Duda and P. E. Hart,Pattern Classification and Scene Analysis. New York: Wiley, 1973.
[2] R. G. Miller,Beyond ANOVA, Basics of Applied Statistics. New York: Wiley, 1986, ch. 5.
[3] M. A. Fischler and R. C. Bolles, "Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,"Commun. ACM, vol. 24, no. 6, pp. 381-395, 1981.
[4] D. Rupert and R. J. Carroll, "Trimmed least squares estimation in the linear model,"J. Amer. Stat. Assoc., vol. 75, p. 828, 1980.
[5] M. L. Brown, "Robust line estimation with errors in both variables,"J. Amer. Stat. Assoc., vol. 77, p. 71, 1982.
[6] M. L. Puri and P. K. Sen,Nonparametric Methods in General Linear Model. New York: Wiley, 1985.
[7] I. Weiss, "Line fitting in a noisy image,"IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 325-328, 1989.
[8] R.O. Duda and P.E. Hart, "Use of the Hough transformation to detect lines and curves in pictures,"Commun. Ass. Comput. Mach., vol. 15, no. 1, pp. 11-15, Jan. 1972.
[9] T. M. van Veen and F. C. A. Groen, "Discretization errors in the Hough transform,"Pattern Recogn., vol. 14, p. 137, 1981.
[10] A. Cornish-Bowden and R. Eisenthal, "Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot and other methods,"Biochem. J., vol. 139, p. 721, 1974.
[11] G. L. Atkins and I. A. Nimmo, "Current trends in the estimation of Michaelis-Menten parameters,"Analytic. Biochem., vol. 104, p. 1, 1980.
[12] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. P. Vetterling,Numerical Recipes. Cambridge, MA: Cambridge University Press, 1986, p. 459.
[13] C. Hoare, "Proof of a program: Find,"Commun. Ass. Commun. Mach., vol. 14, no. 1, p. 39, 1971.
[14] G. W. Brown and A. M. Mood, "On median tests for linear hypotheses," inProc. Second Berkeley Symp. Math. Stat. Prob., J. Neyman, Ed., Univ. California Press, Berkeley, 1951.
[15] N. S. Netanyahu, B. Kamgar-Parsi, and A. Rosenfeld, "Application of direction-based pairwise line fitting estimators to noisy edge data," Univ. Maryland Cen. Automation Res. Tech. Rep. (in preparation).

Index Terms:
straight line fitting; picture processing; pattern recognition; nonparametric method; noisy image; noise distribution; least squares approximations; pattern recognition; picture processing
B. Kamgar-Parsi, B. Kamgar-Parsi, N.S. Netanyahu, "A Nonparametric Method for Fitting a Straight Line to a Noisy Image," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 9, pp. 998-1001, Sept. 1989, doi:10.1109/34.35504
Usage of this product signifies your acceptance of the Terms of Use.