This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Comparison of the Efficiency of Deterministic and Stochastic Algorithms for Visual Reconstruction
January 1989 (vol. 11 no. 1)
pp. 2-12

Piecewise continuous reconstruction of real-valued data can be formulated in terms of nonconvex optimization problems. Both stochastic and deterministic algorithms have been devised to solve them. The simplest such reconstruction process is the weak string. Exact solutions can be obtained for it and are used to determine the success or failure of the algorithms under precisely controlled conditions. It is concluded that the deterministic algorithm (graduated nonconvexity) outstrips stochastic (simulated annealing) algorithms both in computational efficiency and in problem-solving power.

[1] R. Bellman and S. Dreyfus,Applied Dynamic Programming. Princeton, NJ: Princeton University Press, 1962.
[2] J. Besag, "On the statistical analysis of dirty pictures,"J. Roy. Stat. Soc. Lond. B, vol. 48, pp. 259-302, 1986.
[3] A. Blake, "The least disturbance principle and weak constraints,"Pattern Recognition Lett., vol. 1, pp. 393-399, 1983.
[4] A. Blake, "Boundary conditions for lightness computation in Mondrian world,"Comput. Vision, Graphics, Image Processing, vol. 32, pp. 314-327, 1985.
[5] A. Blake and A. Zisserman, "Some properties of weak continuity constraints and the GNC algorithm," inProc. CVPR, Miami, FL, 1986, pp. 656-661.
[6] A. Blake and A. Zisserman, "Invariant surface reconstruction using weak continuity constraints," inProc. CVPR, Miami, FL, 1986, pp. 62-67.
[7] A. Blake, A. Zisserman, and A. V. Papoulias, "Weak continuity constraints generate uniform scale-space descriptions of plane curves," inProc. ECAI, Brighton, England, 1986, pp. 518-528.
[8] A. Blake and A. Zisserman,Visual Reconstruction. Cambridge, MA: MIT Press, 1987.
[9] H. Derin and H. Elliott, "Modeling and segmentation of noisy and textured images using Gibbs random fields,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, pp. 39-55, Jan. 1987.
[10] S. Geman and D. Geman, "Stochastic relaxation, Gibbs distribution, and Bayesian restoration of images,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 721-741, 1984.
[11] W. E. L. Grimson,From Images to Surfaces. Cambridge, MA: MIT Press, 1981.
[12] D. M. Greig, B. T. Porteous, and A. H. Seheult, "Discussion of Besag's paper,"J. Roy. Stat. Soc. Lond. B, vol. 48, pp. 282-284, 1986.
[13] B. K. P. Horn, "Determining lightness from an image,"Comput. Graphics Image Processing, vol. 3, pp. 277-299, 1974.
[14] B. K. P. Horn and B. G. Schunk, "Determining optical flow," inComputer Vision, J. M. Brady, Ed., 1981.
[15] K. Ikeuchi and B. K. P. Horn, "Numerical shape from shading and occluding boundaries, " inComputer Vision, J. M. Brady, Ed., 1981, pp. 141-184.
[16] A. Kashko, "A parallel approach to graduated nonconvexity on a SIMD machine," Dep. Comput. Sci., Queen Mary College, London, England, Rep., 1987.
[17] S. Kirpatrick, C. D. Gellatt, and M. P. Vecchi, "Optimization by simulated annealing," IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 1982.
[18] C. Koch, J. L. Marroquin, and A. Yuille, "Analog networks in early vision," inProc. Nat. Acad. Sci., vol. 83, pp. 4263-4267, 1986.
[19] M. Lundy and A. Mees, "Convergence of the annealing algorithm," Univ. Cambridge, England, Rep. DAMTP, 1984.
[20] J. L. Marroquin, "Surface reconstruction preserving discontinuities," Massachusetts Inst. Technol., Cambridge, A.I. Memo 792, 1984.
[21] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines,"J. Chem. Phys., vol. 6, 1087.
[22] D. Mumford and J. Shah, "Boundary detection by minimizing functionals," inProc. IEEE CVPR, 1985, p. 22.
[23] D. W. Murray and B. F. Buxton, "Scene segmentation from visual motion using global optimization,"IEEE Trans. Patt. Analy. Machine Intell., vol. PAMI-9, pp. 161-180, 1987.
[24] H. H. Nagel, "Constraints for the estimation of displacement vector fields from image sequences," inProc. IJCAI, Karlsruhe, West Germany, 1983, pp. 945-951.
[25] W. E. Smith, H. H. Barrett, and R. G. Paxman, "Reconstruction of objects from coded images by simulated annealing,"Opt. Lett., vol. 8, no. 4, pp. 199-201, 1983.
[26] G. Strang and G. J. Fix,An Analysis of the Finite Element Method. Englewood Cliffs, NJ: Prentice-Hall, 1973.
[27] D. Terzopoulos, "Multilevel computational processes for visual surface reconstruction,"Comput. Vision, Graphics, Image Processing, vol. 24, pp. 52-96, 1983.
[28] D. Terzopoulos, "Regularization of inverse visual problems involving discontinuities,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 4, pp. 413-424, July 1986.
[29] R. J. Woodham, "A cooperative algorithm for determining surface orientation from a single view," inProc. IJCAI, 1977, pp. 635-641.
[30] O. C. Zienkiewicz and K. Morgan,Finite Elements and Approximation. New York: Wiley, 1983.

Index Terms:
deterministic algorithms; stochastic algorithms; visual reconstruction; nonconvex optimization; weak string; computational efficiency; problem-solving power; computer vision; computerised picture processing; optimisation
Citation:
A. Blake, "Comparison of the Efficiency of Deterministic and Stochastic Algorithms for Visual Reconstruction," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 1, pp. 2-12, Jan. 1989, doi:10.1109/34.23109
Usage of this product signifies your acceptance of the Terms of Use.