This Article 
 Bibliographic References 
 Add to: 
A Three-Module Strategy for Edge Detection
November 1988 (vol. 10 no. 6)
pp. 803-810

The first module is a parallel process computing local edge strength and direction, while the last module is sequential process following edges. The originality of the overall method resides in the intermediate module, which is seen as a generalization of the nonmaximum-deletion algorithm. The role of this module is twofold: It enables one to postpone some deletion to the last module where contextual information is available, and it transmits the local edge direction in order to guide the contour following. A postprocessing method called learning edges is proposed as a refinement of the method. The binary edge images extracted from various gray-level images illustrate the power of the strategy.

[1] E. Argyle, "Techniques for edge detection,"Proc. IEEE, vol. 59, pp. 285-286, 1971.
[2] F. Bergholm, "Edge focusing," inProc. 8th Int. Conf. Pattern Recognition, Paris, France, 1986, pp. 597-600.
[3] J. F. Canny, "A computational approach to edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 679-697, 1986.
[4] E. R. Davies, "Constraints on the design of template masks for edge detection,"Pattern Recognition Lett., vol. 4, pp. 111-120, Apr. 1986.
[5] W. Frei and C.-C. Chen, "Fast boundary detection: A generalization and a new algorithm,"IEEE Trans. Comput., vol. C-26, no. 10, pp. 988-998, Oct. 1977.
[6] W. E. Grimson and E. C. Hildreth, "Comments on 'Digital step edges from zero crossings of second directional derivatives',"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-7, no. 1, pp. 121-129, 1985.
[7] R. M. Haralick, "Digital step edges from zero crossing of the second directional derivatives,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, no. 1, pp. 58-68, Jan. 1984.
[8] M. H. Hueckel, "A local visual operator which recognizes edges and lines,"J. Assoc. Comput. Machine, vol. 20, pp. 634-647, 1973.
[9] C. J. Jacobus and R. T. Chien, "Two new edge detectors,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-3, no. 5, pp. 581- 592, Sept. 1981.
[10] R. A. Kirsch, "Computer determination of the constituent structure of biomedical images,"Comput. Biomed. Res., vol. 4, pp. 315-328, 1971.
[11] M. Kunt, "Source coding of X-Ray pictures,"IEEE Trans. Biomed. Eng., vol. BME-25, no. 2, pp. 121-138, Mar. 1978.
[12] M. Kunt, "Edge detection: A tutorial review," inProc. ICASSP82, pp. 1172-1175.
[13] I. D. G. MacLeod, "Comments on 'Techniques for edge detection',"Proc. IEEE, vol. 60, p. 344, 1972.
[14] D. Marr and E. Hildreth, "Theory of edge detection,"Proc. Roy. Soc. London, vol. B 207, pp. 187-217, 1980.
[15] L. Mérõand Z. Vassy, "A simplified and fast version of the Hueckel operator for finding optimal edges in pictures," inProc. 4th. Int. Joint. Conf. Artificial Intelligence, Tbilisi, Georgia, USSR, Sept. 3- 8, 1975, pp. 650-655.
[16] M. Nagao and T. Matsuyama, "Edge preserving smoothing,"Comput. Graphics Image Processing, vol. 9, pp. 394-407, 1979.
[17] J. M. Prewitt, "Object enhancement and extraction," inPicture Processing and Psychopictoris, B. S. Lipkin and A. Rosenfeld, Eds. New York: Academic, 1970, pp. 75-149.
[18] L. G. Roberts, "Machine perception of three-dimensional solids," inOptical and Electro-Optical Information Processing, J. T. Tippettet al., Eds. Cambridge, MA: MIT Press, 1965, pp. 159-197.
[19] G. S. Robinson, "Edge detection by compass gradient masks,"Comput. Graphics, Image Processing, vol. 6, pp. 492-501, 1977.
[20] A. Rosenfeld and M. Thurston, "Edge and curve detection for visual scene analysis,"IEEE Trans. Comput., vol. C-20, no. 5, pp. 562- 569, May 1971.
[21] A. P. Witkin, "Scale-space filtering," inProc. 4th Int. Joint Conf. Artificial Intelligence, 1983, pp. 1019-1022.
[22] V. Torre and T. A. Poggio, "On edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 147-163, Mar. 1986.
[23] Y. Yakimovsky, "Boundary and object detection in real world images,"JACM, vol. 23, no. 4, pp. 598-619, Oct. 1976.
[24] A. Yuille and T. Poggio, "Scaling theorems for zero crossings,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 1, pp. 15-25, 1986.

Index Terms:
computerized pattern recognition; computerized picture processing; three-module strategy; edge detection; parallel process; sequential process; nonmaximum-deletion algorithm; contextual information; contour following; learning edges; binary edge images; gray-level images; computerised pattern recognition; computerised picture processing; modules; parallel processing
V. Lacroix, "A Three-Module Strategy for Edge Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 6, pp. 803-810, Nov. 1988, doi:10.1109/34.9103
Usage of this product signifies your acceptance of the Terms of Use.