
This Article  
 
Share  
Bibliographic References  
Add to:  
Digg Furl Spurl Blink Simpy Del.icio.us Y!MyWeb  
Search  
ASCII Text  x  
"Computing the width of a set," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 5, pp. 761,762,763,764,765, September, 1988.  
BibTex  x  
@article{ 10.1109/34.6790, author = {}, title = {Computing the width of a set}, journal ={IEEE Transactions on Pattern Analysis and Machine Intelligence}, volume = {10}, number = {5}, issn = {01628828}, year = {1988}, pages = {761,762,763,764,765}, doi = {http://doi.ieeecomputersociety.org/10.1109/34.6790}, publisher = {IEEE Computer Society}, address = {Los Alamitos, CA, USA}, }  
RefWorks Procite/RefMan/Endnote  x  
TY  JOUR JO  IEEE Transactions on Pattern Analysis and Machine Intelligence TI  Computing the width of a set IS  5 SN  01628828 SP EP EPD  761,762,763,764,765 PY  1988 KW  set theory KW  computational complexity KW  computational geometry KW  pattern recognition KW  polygons KW  3D space KW  point sets KW  computational complexity KW  pattern recognition KW  computational geometry KW  parallel planes KW  convex hull KW  time complexity KW  Concurrent computing KW  Artificial intelligence KW  Computational geometry KW  Image processing KW  Minimax techniques KW  Pattern recognition KW  Canada Councils KW  Computer science KW  Terminology KW  Euclidean distance VL  10 JA  IEEE Transactions on Pattern Analysis and Machine Intelligence ER   
[1] G. T. Toussaint, "Movable separability of sets," inComputational Geometry, G. T. Toussaint, Ed. Amsterdam, The Netherlands: NorthHolland, 1985, pp. 335375.
[2] M. I. Shamos, "Computational geometry," Ph.D. dissertation, Dep. Comput. Sci., Yale Univ., 1978.
[3] K. Q. Brown, "Geometric transforms for fast geometric algorithms," Dep. Comput. Sci., CarnegieMellon Univ., 1979.
[4] D. G. Kirkpatrick and R. Seidel, "The ultimate planar convex hull algorithm?", Dep. Comput. Sci., Cornell Univ., Tech. Rep. 83577, Oct. 1982.
[5] M. M. McQueen and G. T. Toussaint, "On the ultimate convex hull algorithm in practice,"Pattern Recognition Lett., pp. 2934, Jan. 1985.
[6] D. McCallum and D. Avis, "A linear time algorithm for finding the convex hull of a simple polygon,"Inform. Processing Lett., pp. 201 205, Dec. 1979.
[7] D. T. Lee, "On finding the convex hull of a simple polygon," Tech. Northwestern Univ., Tech. Rep. 8003FC01, Mar. 1980.
[8] L. Guibas and R. Seidel, "Computing convolutions by reciprocal search," inProc. 2nd Symp. Comput. Geom., Yorktown Heights, NY, 1986, pp. 9099.
[9] M. E. Houle and G. T. Toussaint, "Computmng the width of a set," Tech. Rep. SOCS84.22, Dec. 1984.
[10] F. P. Preparata and S. J. Hong, "Convex hulls of finite sets of points in two and three dimensions,"Commun. ACM, vol. 20, pp. 8793, 1977.
[11] K. Ichida and T. Kiyono, "Segmentation of plane curves,"Trans. Elec. Commun. Eng., Japan, vol. 58D, pp. 689696, 1975.
[12] H. Imai and M. Iri, "Polygonal approximations of a curve: Formulations and solution algorithms," inComputational Morphology, G. T. Toussaint, Ed. Amsterdam, The Netherlands: North Holland, to be published.
[13] Y. Kurozumi and W. A. Davis, "Polygonal approximation by the minimax method,"Comput. Graphics Image Processing, vol. 19, pp. 248264, 1982.
[14] G. Toussaint, "Solving geometric problems with the rotating calipers," inProc. MELECON '83, Athens, Greece, 1983.
[15] G. Toussaint, "Approximating polygonal curves in threedimensions," manuscript in preparation.