This Article 
 Bibliographic References 
 Add to: 
Using Constancy of Distance to Estimate Position and Displacement in Space
July 1988 (vol. 10 no. 4)
pp. 594-599

The problem of computing structure and motion from the observation of points in two distinct images of a scene is considered. The proposed method explicitly utilizes the principle of conservation of distance during rigid-body motion. The formulation is such that it separates the problem of estimating object position from that of determining motion parameters. The equations of invariance of distance for a rigid body are solved for the points' position in space. When these coordinates in space are known, motion parameters are computed in a simple and straightforward manner. Examples are given to illustrate the efficiency of the algorithm.

[1] W. N. Martin and J. K. Aggarwal, "Dynamic scence analysis--A survey,"Comput. Graphics Image Processing, vol. 1, pp. 356-374, 1978.
[2] P. Rives, "Caraterisation du deplacement d'un object tridimensional--Application au domaine des videoconferences," Institut National de la Recherche Scientifique, INRS-Telecommunications, Univ. of Quebec, Canada, TR 82-10, Sept. 1982.
[3] A. Mitiche and P. Bouthemy, "Tracking modelled objects using binocular images,"Comput. Vision, Graphics, Image Processing, vol. 32, pp. 384-396, 1985.
[4] H. F. L. Pinkney, "Theory and development of an on-line 3-HZ video photogrammetry system for real time 3-dimensional control," presented at the Int. Soc. Photogrammetry, Symp. Commission V, Photogrammetry for Industry, Stockholm, Sweden, Aug. 1978.
[5] M. C. van Wijk and H. F. L. Pinkney, "A single camera method for the 6-degree of freedome sprung mass response of vehicles redirected by cable barriers," Nat. Res. Council Canada, Rep. NRC-12928.
[6] Y. Yakimovsky and R. Cunningham, "A system for extracting three-dimensional measurements from a stereo pair of TV images,"Comput. Graphics Image Processing, vol. 7, pp. 195-210, 1978.
[7] W. Martin and J. K. Aggarwal, "Computer analysis of dynamic scenes containing curvilinear figures,"Pattern Recognition, vol. 11, pp. 169-178, 1979.
[8] N. Badler, "Temporal scene analysis: Conceptual descriptions of object movements," Ph.D. dissertation, Univ. Toronto, Ont., Canada, TR80, 1975.
[9] J. W. Roach and J. K. Aggarwal, "Computer tracking of objects moving in space,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-1, pp. 127-135, Mar. 1979.
[10] S. Ullman, "The interpretation of structure from motion," M.I.T. Artificial Intell. Lab., AI Memo 476, Oct. 1986.
[11] J. W. Roach and J. K. Aggarwal, "Determining the movement of objects from a sequence of images,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 554-562, Nov. 1980.
[12] J. A. Webb and J. K. Aggarwal, "Structure from motion of rigid and jointed objects,"Artificial Intell., vol. 19, pp. 107-130, 1982.
[13] J. A. Webb and J. K. Aggarwal, "Visually interpreting the motion of objects in space,"IEEE Comput., pp. 40-46, Aug. 1981.
[14] H. H. Nagel, "Determination of moving rigid objects based on visual observations,"IEEE Comput., vol. 14, pp. 29-39, Aug. 1981.
[15] R. Y. Tasi and T. S. Huang, "Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 13-26, 1984.
[16] H. C. Longuet-Higgins, "A computer algorithm for reconstructing a scene from two projections,"Nature (London), vol. 293, pp. 133- 135, 1981.
[17] X. Zhuang and R. M. Haalick, "Two-view motion analysis," inProc. IEEE Conf. Comput. Vision Pattern Recognition, San Francisco, CA, 1985, pp. 686-690.
[18] H. C. Longuet-Higgins, "The reconstruction of a scene from two projections--Configurations that defeat the 8-point algorithm," inProc. 1st Conf. Artificial Intell. Appl., Denver, CO, 1984, pp. 395- 397.
[19] C. Jerian and R. Jain, "Determining motion parameters for sciences with translation and rotation,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 523-530, July 1984.
[20] J. K. Aggarwal, "Three-dimensional description of objects and dynamic scene analysis," inDigital Imaging Analysis, S. Levialdi, Ed. London: Pitman, 1984, pp. 29-46.
[21] T. S. Huang and R. Y. Tsai, "Image sequence analysis: Motion estimation," inImage Sequence Analysis, T. S. Huang Ed. New York: Springer-Verlag, 1981, ch. 1, pp. 1-18.
[22] J. Lelong-Ferrand and J. M. Arnaudies,Cours de Mathematiques, Tome 3, 2nd ed. Paris: Dunod Univ., 1974.
[23] A. Mitiche, "Computation of optical flow and rigid motion," inProc. Workshop Comput. Vision: Representation and Contr., Annapolis, MD, 1984, pp. 63-71.
[24] A. Mitiche, "On combining stereopis and kineopsis for space perception," inProc. 1st Conf. Artificial Intell. Appl., Denver, CO, 1984, pp. 156-160.
[25] S. Ullman, "Maximizing rigidity: The incremental recovery of 3-D structure from rigid and nonrigid motion,"Perception, vol. 13, pp. 225-274, 1984.
[26] IEEE Workshop on Motion: Representation and Analysis, Charleston, SC, May 1986.
[27] S. Ganapathy, "Decomposition of transformation matrices for robot vision," inProc. Int. Conf. Robotics Automat., 1984.
[28] LMDER, Minpack Subroutine, Argonne Nat. Lab., Mar. 1980.

Index Terms:
position parameter estimation; distance constancy; computerised picture processing; displacement; rigid-body motion; computerised picture processing; parameter estimation
A. Mitiche, S. Seida, J.K. Aggarwal, "Using Constancy of Distance to Estimate Position and Displacement in Space," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 4, pp. 594-599, July 1988, doi:10.1109/34.3921
Usage of this product signifies your acceptance of the Terms of Use.