This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
The Computation of Visible-Surface Representations
July 1988 (vol. 10 no. 4)
pp. 417-438

A computational theory of visible-surface representations is developed. The visible-surface reconstruction process that computes these quantitative representations unifies formal solutions to the key problems of: (1) integrating multiscale constraints on surface depth and orientation from multiple-visual sources; (2) interpolating dense, piecewise-smooth surfaces from these constraints; (3) detecting surface depth and orientation discontinuities to apply boundary conditions on interpolation; and (4) structuring large-scale, distributed-surface representations to achieve computational efficiency. Visible-surface reconstruction is an inverse problem. A well-posed variational formulation results from the use of a controlled-continuity surface model. Discontinuity detection amounts to the identification of this generic model's distributed parameters from the data. Finite-element shape primitives yield a local discretization of the variational principle. The result is an efficient algorithm for visible-surface reconstruction.

[1] M. Abramowitz and I. A. Stegun, Ed.,Handbook of Mathematical Functions. New York: Dover, 1965.
[2] H. G. Barrow and J. M. Tenenbaum, "Recovering intrinsic scene characteristics from images," inComputer Vision Systems, A. Hanson and E. Riseman, Eds. New York: Academic, 1978, pp. 3-26.
[3] H. G. Barrow and J. M. Tenenbaum, "Reconstructing smooth surfaces from partial, noisy information," inProc. DARPA Image Understanding Workshop, L. S. Baumann, Ed., Univ. Southern California, 1979, pp. 76-86.
[4] H. G. Barrow and J. M. Tenenbaum, "Interpreting line drawings as three-dimensional surfaces,"Artificial Intell., vol. 17, pp. 75-116, 1981.
[5] P. Besl and R. Jain, "Invariant surface characteristics for 3-D object recognition in range images,"Comput. Vision Graphics Image Processing, 1986, pp. 33-80, vol. 33.
[6] A. Blake, "The least-disturbance principle and weak constraints,"tern Recognition Lett., vol. 1, pp. 393-399, 1983.
[7] A. Blake, "Reconstructing a visible surface," inProc. Nat. Conf. AI (AAAI-84), Austin, TX, 1984, pp. 23-26.
[8] A. Blake and A. Zisserman, "Invariant surface reconstruction using weak continuity constraints," inProc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, FL, 1986, pp. 62-67.
[9] G. Bolondi, F. Rocca, and S. Zanoletti, "Automatic contouring of faulted subsurfaces,"Geophys., vol. 41, pp. 1377-1393, 1976.
[10] T. E. Boult and J. R. Kender, "Visual surface reconstruction using sparse depth data," inProc. IEEE Conf. Computer Vision and Pattern Recognition, Miami, FL, 1986, pp. 68-76.
[11] O. J. Braddick, F. W. Campbell, and J. Atkinson, "Channels in vision: Basic aspects," inHandbook of Sensory Physiology: Perception, vol. 8, R. Held, H. W. Leibowitz, and H. L. Teuber, Eds. Berlin: Springer, 1978, pp. 3-38.
[12] J. M. Brady and B. K. P. Horn, "Rotationally symmetric operators for surface interpolation,"Comput. Vision, Graphics, Image Processing, vol. 22, pp. 70-94, 1983.
[13] J. M. Brady, J. Ponce, A. Yuille, and H. Asada, "Describing surfaces,"Comput. Vision, Graphics, Image Processing, vol. 32, pp. 1-28, 1985.
[14] I. C. Briggs, "Machine contouring using minimum curvature,"Geophys., vol. 39, pp. 39-48, 1974.
[15] P. Burt and B. Julesz, "A disparity gradient limit for binocular fusion,"Science, vol. 208, pp. 615-617, 1980.
[16] G. Chavent, "Identification of distributed parameters," inIFAC Symp. Identification and System Parameter Estimation. New York: American Elsevier, 1973.
[17] F. H. Clarke,Optimization and Nonsmooth Analysis. New York: Wiley-Interscience, 1983.
[18] T. S. Collett, "Extrapolating and interpolating surfaces in depth," Proc. Roy. Soc. London B, vol. 224, pp. 43-56, 1985.
[19] S. Cochran and M.-M. Medioni, "Implementation of a multiresolution surface reconstruction algorithm," Dep. Elec. Eng. and Comput. Sci., Univ. Southern California, Los Angeles, Rep. ISG-108, 1985.
[20] M. P. do Carmo,Differential Geometry of Curves and Surfaces. Englewood Cliffs, NJ: Prentice-Hall, 1976.
[21] Y. M. Ermoliev, "Methods of nondifferentiable and stochastic optimization and their applications," inProgress in Nondifferentiable Optimization, E. A. Nurminski, Ed., Int. Inst. Appl. Syst. Anal., Laxenburg, Austria, 1982.
[22] T. J. Fan, G. Medioni, and R. Nevatia, "Description of surfaces from range data," inProc. DARPA Image Understanding Workshop, Miami Beach, FL, L. S. Baumann, Ed., 1985, pp. 232-244.
[23] R. Franke, "Thin plate splines with tension,"Comput. Aided Geometric Design, vol. 2, pp. 87-95, 1985.
[24] R. Franke and G. M. Neilson, "Surface approximation with imposed conditions," inSurfaces in Computer Aided Geometric Design, R. E. Barnhill and W. Boehm, Eds. Amsterdam, The Netherlands: North-Holland, 1983, pp. 135-146.
[25] S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 721-741, 1985.
[26] J. J. Gibson,The Perception of the Visual World. Boston, MA: Houghton Mifflin, 1950.
[27] W. E. L. Grimson,From Images to Surfaces: A Computational Study of the Human Early visual System. Cambridge, MA: MIT Press, 1981.
[28] W. E. L. Grimson, "An implementation of a computational theory of visual surface interpolation,"Comput. Vision, Graphics, Image Processing, vol. 22, pp. 39-69, 1983.
[29] W. E. L. Grimson, "Computational experiments with a feature based stereo algorithm,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-7, pp. 17-34, 1985.
[30] W. E. L. Grimson and T. Pavlidis, "Discontinuity detection for visual surface reconstruction,"Comput. Vision, Graphics, Image Processing, vol. 30, pp. 316-330, 1985.
[31] W. Hackbusch,Multi-Grid Methods and Applications. Berlin: Springer-Verlag, 1985.
[32] L. A. Hageman and D. M. Young,Applied Iterative Methods. New York: Academic, 1981.
[33] J. G. Harris, "The coupled depth/slope approach to surface reconstruction," M.S. thesis, Dep. Elec. Eng. Comput. Sci., MIT, Cambridge, MA, 1986.
[34] B. K. P. Horn, "Sequins and quills--A representation for surface topography," inRepresentation of Three-Dimensional Objects, R. Bajcsy, Ed. New York: Springer-Verlag, 1982.
[35] W. J. Karplus,Analog Simlulation: Solution of Field Problems. New York: McGraw-Hill, 1958.
[36] M. Kass, "Computing visual correspondence," inFrom Pixels to Predicates, A. P. Pentland, Ed. Norwood, NJ: Ablex, 1986, pp. 78-92.
[37] C. Koch, J. L. Marroquin, and A. L. Yuille, "Analog "neuronal" networks in early vision,"Proc. Nat. Acad. Sci., p. 4263, 1986.
[38] D. J. Langridge, "Detection of discontinuities in the first derivatives of surfaces,"Comput. Vision, Graphics, Image Processing, vol. 27, pp. 291-308, 1984.
[39] Y. Leclerc and S. W. Zucker, "The local structure of image discontinuities in one dimension,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-9, pp. 341-355, 1987.
[40] D. Marr,Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco, CA: Freeman, 1982.
[41] D. Marr and H. K. Nishihara, "Representation and recognition of the spatial organization of three-dimensional shapes,"Proc. Roy. Soc. London B, vol. 200, 1978, pp. 269-294.
[42] J. L. Marroquin, "Surface reconstruction preserving discontinuities," Massachusetts Inst. Technol., Cambridge, A.I. Memo 792, 1984.
[43] D. Mumford and J. Shah, "Boundary detection by minimizing functionals, I," inProc. IEEE Conf. Computer Vision and Pattern Recognition, San Francisco, CA, 1985, pp. 22-26.
[44] T. Poggio, V. Torre, and C. Koch, "Computational vision and regularization theory,"Nature, vol. 317, pp. 314-319, 1985.
[45] M. P. Polis and R. E. Goodson, "Parameter identification in distributed systems: A synthesizing overview,"Proc. IEEE, vol. 64, pp. 45-61, 1976.
[46] R. T. Rockafellar,The Theory of Subgradients and its Application to Problems of Optimization: Convex and Nonconvex Functions. Berlin: Helderman Verlag, 1981.
[47] L. L. Schumaker, "Fitting surfaces to scattered data," inApproximation Theory II, G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds. New York: Academic, 1976, pp. 203-267.
[48] J. H. Shiau, "Smoothing spline estimation of functions with discontinuities," Ph.D. dissertation, Dep. Statistics, Univ. Wisconsin, Madison, 1985.
[49] G. Strang and G. J. Fix,An Analysis of the Finite Element Method. Englewood Cliffs, NJ: Prentice-Hall, 1973.
[50] R. Szilard,Theory and Analysis of Plates: Classical and Numerical Methods. Englewood Cliffs, NJ: Prentice-Hall, 1974.
[51] D. Terzopoulos, "Multilevel computational processes for visual surface reconstruction,"Comput. Vision, Graphics, Image Processing, vol. 24, pp. 52-96, 1983.
[52] D. Terzopoulos, "The role of constraints and discontinuities in visible-surface reconstruction," inProc. 8th Int. Joint Conf. AI, Karlsruhe, W. Germany, 1983, pp. 1073-1077.
[53] D. Terzopoulos, "Multiresolution computation of visible surface representations," Ph.D. dissertation, Dep. Elec. Eng. Comput. Sci., MIT, Cambridge, MA, Jan. 1984.
[54] D. Terzopoulos, "Concurrent multilevel relaxation," inProc. DARPA Image Understanding Workshop, L. S. Baumann, Ed., Miami Beach, FL, 1985, pp. 156-162.
[55] D. Terzopoulos, "Image analysis using multigrid relaxation methods,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 129-139, Mar. 1986.
[56] D. Terzopoulos, "Regularization of inverse visual problems involving discontinuities,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 4, pp. 413-424, July 1986.
[57] A. N. Tikhonov and V. A. Arsenin,Solutions of Ill-Posed Problems. Washington, DC: Winston and Sons, 1977.
[58] V. Torre and T. A. Poggio, "On edge detection,"IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 147-163, Mar. 1986.
[59] B.C. Vemuri, A. Mitiche, and J.K. Aggarwal, "Curvature-based representation of objects from range data,"Image and Vision Comput., vol. 4, no. 2, pp. 107-114, May 1986.
[60] G. Wahba, "Spline bases, regularization, and generalized cross validation for solving approximation problems with large quantities of noisy data, " inApproximation Theory III, E. W. Cheney, Ed. New York: Academic, 1980, pp. 905-912.
[61] E. Wasserstrom, "Numerical solutions by the continuation method,"SIAM Rev., vol. 15, pp. 89-119, 1973.
[62] R. J. Woodham, "Analyzing images of curved surfaces,"Artificial Intell., vol. 17, pp. 117-140, 1981.
[63] O. C. Zienkiewicz,The Finite Element Method, 3rd ed. New York: McGraw-Hill, 1979.
[64] S. W. Zucker, R. A. Hummel, and A. Rosenfeld, "An application of relaxation labeling to line and curve enhancement,"IEEE Trans. Comput., vol. C-26, pp. 394-403, 1977.
[65] S. W. Zucker and P. Parent, "Multiple size operators and optimal curve finding," inMultiresolution Image Processing and Analysis, A. Rosenfeld, Ed. New York: Springer-Verlag, 1984, pp. 200-210.

Index Terms:
finite element shape primitives; picture processing; pattern recognition; visible-surface representations; multiscale constraints; surface depth; orientation; interpolation; surface model; discretization; variational principle; finite element analysis; interpolation; pattern recognition; picture processing
Citation:
D. Terzopoulos, "The Computation of Visible-Surface Representations," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10, no. 4, pp. 417-438, July 1988, doi:10.1109/34.3908
Usage of this product signifies your acceptance of the Terms of Use.