The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - May (1987 vol.9)
pp: 644-660
Wynn C. Stirling , Department of Electrical Engineering, Brigham Young University, Provo, UT 84602.
A. Lee Swindlehurst , Department of Electrical Engineering, Brigham Young University, Provo, UT 84602.
ABSTRACT
A decision-directed learning strategy is presented to recursively estimate (i.e., track) the time-varying a priori distribution for a multivariate empirical Bayes adaptive classification rule. The problem is formulated by modeling the prior distribution as a finite-state vector Markov chain and using past decisions to estimate the time evolution of the state of this chain. The solution is obtained by implementing an exact recursive nonlinear estimator for the rate vector of a multivariate discrete-time point process representing the decisions. This estimator obtains the Doob decomposition of the decision process with respect to the a-field generated by all past decisions and corresponds to the nonlinear least squares estimate of the prior distribution. Monte Carlo simulation results are provided to assess the performance of the estimator.
CITATION
Wynn C. Stirling, A. Lee Swindlehurst, "Decision-Directed Multivariate Empirical Bayes Classification with Nonstationary Priors", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.9, no. 5, pp. 644-660, May 1987, doi:10.1109/TPAMI.1987.4767959
17 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool