The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - April (1986 vol.8)
pp: 502-511
Gustavo Belforte , Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
Basilio Bona , Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
Roberto Tempo , Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy; Centro Elaborazione Numerale dei Segnali, Consiglio Nazionale de
ABSTRACT
This paper considers the problem of stopping rules, in the context of sequential Bayesian classification. In particular a new criterion, based on the probability of reversal of the obtained classification, is introduced and compared to more commonly used strategies. The results show good behavior of the proposed technique, with both simulated and real data drawn from biomedical application. In fact it appears that this stopping rule reduces the misallocation error rate with the same mean number of used features, or conversely, with an equal level of misallocation error rate, it reduces the mean number of features necessary to attain it.
CITATION
Gustavo Belforte, Basilio Bona, Roberto Tempo, "Conditional Allocation and Stopping Rules in Bayesian Pattern Recognition", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.8, no. 4, pp. 502-511, April 1986, doi:10.1109/TPAMI.1986.4767814
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool