The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.04 - April (1986 vol.8)
pp: 491-501
Michael G. Thomason , Department of Computer Science, University of Tennessee, Knoxville, TN 37996.
ABSTRACT
Inference of Markov networks from finite sets of sample strings is formulated using dynamic programming. Strings are installed in a network sequentially via optimal string-to-network alignments computed with a dynamic programming matrix, the cost function of which uses relative frequency estimates of transition probabilities to emphasize landmark substrings common to the sample set. Properties of an inferred network are described and the method is illustrated with artificial data and with data representing banded human chromosomes.
CITATION
Michael G. Thomason, "Dynamic Programming Inference of Markov Networks from Finite Sets of Sample Strings", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.8, no. 4, pp. 491-501, April 1986, doi:10.1109/TPAMI.1986.4767813
22 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool