The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - March (1985 vol.7)
pp: 366-372
Tao Gu , University of Technology of Compiegne, 60206 Compiegne Cedex, France.
B. Dubuisson , University of Technology of Compiegne, 60206 Compiegne Cedex, France.
ABSTRACT
A loose-pattern process approach to clustering sets consists of three main computations: loose-pattern reject option, tight-pattern classifcation, and loose-pattern assigning classes. The loose-pattern rejection is implemented using a rule based on q nearest neighbors of each point. Two clustering methods, GLC and OUPIC, are introduced as tight-pattern clustering techniques. The decisions of loose-pattern assigning classes are related to a heuristic membership function. The function and experiments with one set is discussed.
CITATION
Tao Gu, B. Dubuisson, "A Loose-Pattern Process Approach to Clustering Fuzzy Data Sets", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.7, no. 3, pp. 366-372, March 1985, doi:10.1109/TPAMI.1985.4767669
5 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool