The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January (1985 vol.7)
pp: 107-112
Keinosuke Fukunaga , Department of Electrical Engineering, Purdue University, West Lafayette, IN 47907.
Thomas E. Flick , Department of Electrical Engineering, Purdue University, West Lafayette, IN 47907.
ABSTRACT
By proper design of a nearest-neighbor (NN) rule, it is possible to reduce effects of sample size in NN risk estimation. The 2-NN rule for the two-class problem eliminates the first-order effects of sample size. Since its asymptotic value is exactly half that of the 1-NN rule, it is possible to substitute the 2-NN rule for the 1-NN rule with a resultant increase in accuracy. For further stabilization of the risk estimate with respect to sample size, 2-NN polarization is suggested. Examples are included. The 2-NN approach is extended to M-class and 2k-NN.
CITATION
Keinosuke Fukunaga, Thomas E. Flick, "The 2-NN Rule for More Accurate NN Risk Estimation", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.7, no. 1, pp. 107-112, January 1985, doi:10.1109/TPAMI.1985.4767625
87 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool