This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Classification Error for a Very Large Number of Classes
June 1984 (vol. 6 no. 6)
pp. 779-788
Keinosuke Fukunaga, School of Electrical Engineering, Purdue University, West Lafayette, IN 47907.
Thomas E. Flick, School of Electrical Engineering, Purdue University, West Lafayette, IN 47907; Naval Research Laboratory, Washington, DC 20375.
Classification error is analyzed for a situation where the number of possible classes may be on the order of a hundred or more. The error associated with classifying to a single class is shown to depend mainly on average nearest-neighbor distance between class means, noise level, and effective dimensionality of the class mean distribution and not much on other aspects of the distribution, noise correlation, or number of classes. Since single class error is large, separation of classes into groups is also explored. Group classification error has the same properties as single class error but the size of the error is moderated by the Bayes overlap between groups. Standard curves are provided to predict single class and group error. Also discussed are the effect of pattern blurring on classification error and the nearest-neighbor distance statistics throughout a distribution.
Citation:
Keinosuke Fukunaga, Thomas E. Flick, "Classification Error for a Very Large Number of Classes," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 779-788, June 1984, doi:10.1109/TPAMI.1984.4767601
Usage of this product signifies your acceptance of the Terms of Use.