The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.03 - March (1984 vol.6)
pp: 280-288
Lawrence O'Gorman , Department of Electrical Engineering and the Robotics Institute, Carnegie-Mellon University, Pittsburgh, PA 15213; Bell Laboratories, Murray Hill, NJ 07974.
ABSTRACT
The converging squares algorithm is a method for locating peaks in sampled data of two dimensions or higher. There are two primary advantages of this algorithm over conventional methods. First, it is robust with respect to noise and data type. There are no empirical parameters to permit adjustment of the process, so results are completely objective. Second, the method is computationally efficient. The inherent structure of the algorithm is that of a resolution pyramid. This enhances computational efficiency as well as contributing to the quality of noise immunity of the method. The algorithm is detailed for two-dimensional data, and is described for three-dimensional data. Quantitative comparisons of computation are made with two conventional peak picking methods. Applications to biomedical image analysis, and for industrial inspection tasks are discussed.
CITATION
Lawrence O'Gorman, "The Converging Squares Algorithm: An Efficient Method for Locating Peaks in Multidimensions", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.6, no. 3, pp. 280-288, March 1984, doi:10.1109/TPAMI.1984.4767520
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool