This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Local Shading Analysis
February 1984 (vol. 6 no. 2)
pp. 170-187
Alex P. Pentland, Artificial Intelligence Center, SRI International, Menlo Park, CA 94025; Departments of Computer Science and Psychology, Stanford University, Stanford, CA 94305.
Local analysis of image shading, in the absence of prior knowledge about the viewed scene, may be used to provide information about the scene. The following has been proved. Every image point has the same image intensity and first and second derivatives as the image of some point on a Lambertian surface with principal curvatures of equal magnitude. Further, if the principal curvatures are assumed to be equal there is a unique combination of image formation parameters (up to a mirror reversal) that will produce a particular set of image intensity and first and second derivatives. A solution for the unique combination of surface orientation, etc., is presented. This solution has been extended to natural imagery by using general position and regional constraints to obtain estimates of the following: ¿ surface orientation at each image point; ¿ the qualitative type of the surface, i.e., whether the surface is planar, cylindrical, convex, concave, or saddle; ¿ the illuminant direction within a region. Algorithms to recover illuminant direction and estimate surface orientation have been evaluated on both natural and synthesized images, and have been found to produce useful information about the scene.
Citation:
Alex P. Pentland, "Local Shading Analysis," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 6, no. 2, pp. 170-187, Feb. 1984, doi:10.1109/TPAMI.1984.4767501
Usage of this product signifies your acceptance of the Terms of Use.