This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
On the Use of I-Divergence for Generating Distribution Approximations
June 1983 (vol. 5 no. 6)
pp. 661-664
M. A. G. Mattoso Maia, Electronics Laboratories, University of Kent at Canterbury, Kent CT2 7NT, England.
M. C. Fairhurst, Electronics Laboratories, University of Kent at Canterbury, Kent CT2 7NT, England.
The existence of an upper bound for the error probability as a function of I-divergences between an original and an approximating distribution is proved. Such a bound is shown to be a monotonic nondecreasing function of the I-divergences, reaching the Bayes error probability when they vanish. It has been shown that if the closeness between the original and approximating distributions is assessed by the probability of error associated with a particular two-class recognition problem in which those functions are the class conditional distributions, then the best upper bound for such probability is ¿ regardless of the value of the I-divergences between them. Approaching the approximation problem from a rather different viewpoint, this correspondence considers the problem of a two-class discrete measurement classification where the original distributions are replaced by approximations, and its effects on the probability of error. The corresponding analysis is presented in detail.
Citation:
M. A. G. Mattoso Maia, M. C. Fairhurst, "On the Use of I-Divergence for Generating Distribution Approximations," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 5, no. 6, pp. 661-664, June 1983, doi:10.1109/TPAMI.1983.4767458
Usage of this product signifies your acceptance of the Terms of Use.