This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Unsupervised Learning Approach to Adaptive Differential Pulse Code Modulation
April 1982 (vol. 4 no. 4)
pp. 380-391
Norman C. Griswold, MEMBER, IEEE, Department of Electrical Engineering, Texas A&M University, College Station, TX 77843.
Khalid Sayood, STUDENT MEMBER, IEEE, Department of Electrical Engineering, Texas A&M University, College Station, TX 77843.
This research is concerned with investigating the problem of data compression utilizing an unsupervised estimation algorithm. This extends previous work utilizing a hybrid source coder which combines an orthogonal transformation with differential pulse code modulation (DPCM). The data compression is achieved in the DPCM loop, and it is the quantizer of this scheme which is approached from an unsupervised learning procedure. The distribution defining the quantizer is represented as a set of separable Laplacian mixture densities for two-dimensional images. The condition of identifiability is shown for the Laplacian case and a decision directed estimate of both the active distribution parameters and the mixing parameters are discussed in view of a Bayesian structure. The decision directed estimators, although not optimum, provide a realizable structure for estimating the parameters which define a distribution which has become active. These parameters are then used to scale the optimum (in the mean square error sense) Laplacian quantizer. The decision criteria is modified to prevent convergence to a single distribution which in effect is the default condition for a variance estimator. This investigation was applied to a test image and the resulting data demonstrate improvement over other techniques using fixed bit assignments and ideal channel conditions.
Citation:
Norman C. Griswold, Khalid Sayood, "Unsupervised Learning Approach to Adaptive Differential Pulse Code Modulation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 4, no. 4, pp. 380-391, April 1982, doi:10.1109/TPAMI.1982.4767269
Usage of this product signifies your acceptance of the Terms of Use.