The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.01 - January (1982 vol.4)
pp: 79-84
Philip A. Dondes , Computer Vision Laboratory, Computer Science Center, University of Maryland, College Park, MD 20742.
Azriel Rosenfeld , Computer Vision Laboratory, Computer Science Center, University of Maryland, College Park, MD 20742.
ABSTRACT
An image can be segmented by classifying its pixels using local properties as features. Two intuitively useful properties are the gray level of the pixel and the ``busyness,'' or gray level fluctuation, measured in its neighborhood. Busyness values tend to be highly vari-able in busy regions; but great improvements in classification accuracy can be obtained by smoothing these values prior to classifying. An alternative possibility is to classify probabilistically and use relaxation to adjust the probabilities.
CITATION
Philip A. Dondes, Azriel Rosenfeld, "Pixel Classification Based on Gray Level and Local ``Busyness''", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.4, no. 1, pp. 79-84, January 1982, doi:10.1109/TPAMI.1982.4767200
20 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool