This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
On the Influence of Sample Set Structure on Decision Rule Quality for the Case of a Linear Discriminant Function
April 1981 (vol. 3 no. 4)
pp. 454-459
Victor Brailovsky, Department of Computer Science, University of Maryland, College Park, MD 20742.
The influence of sample set structure on decision rule quality for the case of a linear discriminant function is considered. Specifically, the case of missing data in the sample set and the case when the multivariate random variable is to be registered with the help of a single-channel device are investigated. Some rather unusual phenomena are discussed, such as when some new samples are added to the sample set, and as a result the quality of parameter estimations used in a decision rule become better, but at the same time the quality of the decision rule itself becomes worse. The investigation is performed for the classical model of a twocategory classifier when the categories are described by the multivariate normal densities having common covariance matrices. Some results of statistical simulation experiments are included.
Citation:
Victor Brailovsky, "On the Influence of Sample Set Structure on Decision Rule Quality for the Case of a Linear Discriminant Function," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 3, no. 4, pp. 454-459, April 1981, doi:10.1109/TPAMI.1981.4767130
Usage of this product signifies your acceptance of the Terms of Use.