The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.02 - February (1981 vol.3)
pp: 117-127
Steven W. Zucker , MEMBER, IEEE, Department of Electrical Engineering, Computer Vision and Graphics Laboratory, McGill University, Montreal, P.Q., Canada.
Yvan G. Leclerc , MEMBER, IEEE, Department of Electrical Engineering, Computer Vision and Graphics Laboratory, McGill University, Montreal, P.Q., Canada.
John L. Mohammed , MEMBER, IEEE, Department of Electrical Engineering, Computer Vision and Graphics Laboratory, McGill University, Montreal, P.Q., Canada.
ABSTRACT
Relaxation labeling processes are a class of iterative algorithms for using contextual information to reduce local ambiguities. This paper introduces a new perspective toward relaxation-that of considering it as a process for reordering labels attached to nodes in a graph. This new perspective is used to establish the formal equivalence between relaxation and another widely used algorithm, local maxima selection. The equivalence specifies conditions under which a family of cooperative relaxation algorithms, which generalize the well-known ones, decompose into purely local ones. Since these conditions are also sufficient for guaranteeing the convergence of relaxation processes, they serve as stopping criteria. We feel that equivalences such as these are necessary for the proper application of relaxation and maxima selection in complex speech and vision understanding systems.
CITATION
Steven W. Zucker, Yvan G. Leclerc, John L. Mohammed, "Continuous Relaxation and Local Maxima Selection: Conditions for Equivalence", IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.3, no. 2, pp. 117-127, February 1981, doi:10.1109/TPAMI.1981.4767069
6 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool