This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Choice of Kernel Function for Density Estimation
March 1980 (vol. 2 no. 3)
pp. 255-258
Dimitri Kazakos, Department of Electrical Engineering, State University of New York at Buffalo, Amherst, NY 14260.
Let l=f^n(x) be the kernel estimate of a density f(x) from a sample of size n. Wahba [6] has developed an upper bound to E[f(x)-l=f^n(x)]2. In the present paper, we find the kernel function of finite support [m=-T, T] that minimizes Wahba's upper bound. It is Q(y) = (1 + am=-1) (2T)m=-1 [1-m=-a|y|a] where a = 2-pm=-1, p m=ge 1.
Citation:
Dimitri Kazakos, "Choice of Kernel Function for Density Estimation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 2, no. 3, pp. 255-258, March 1980, doi:10.1109/TPAMI.1980.4767013
Usage of this product signifies your acceptance of the Terms of Use.