This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
The Consistent Labeling Problem: Part II
March 1980 (vol. 2 no. 3)
pp. 193-203
Robert M. Haralick, SENIOR MEMBER, IEEE, Departments of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS 66045; Department of Electrical Engineering, Virginia Polytechni
Linda G. Shapiro, Department of Computer Science, Kansas State University, Manhattan, KS 66506; Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24
In this second part of a two-part paper, we explore the power and complexity of the g=fKP and g=vKP class of look-ahead operators which can be used to speed up the tree search in the consistent labeling problem. For a specified K and P we show that the fixedpoint power of g=fKP and g=vKP is the same, that g=fKP+1 is at least as powerful as g=fKP, and that g=vK+1p is at least as powerful at g=fKP. Finally, we define a minimal compatibility relation and show how the standard tree search procedure for finding all the consistent labelings is quicker for a minimal relation. This leads to the concept of grading the complexity of compatibility relations according to how much look-ahead work it requires to reduce them to minimal relations and suggests that the reason look-ahead operators, such as Waltz filtering, work so well is that the compatibility relations used in practice are not very complex and are reducible to minimal or near minimal relations by a g=fKP or g=vKP look-ahead operator with small value for parameter P.
Citation:
Robert M. Haralick, Linda G. Shapiro, "The Consistent Labeling Problem: Part II," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 2, no. 3, pp. 193-203, March 1980, doi:10.1109/TPAMI.1980.4767007
Usage of this product signifies your acceptance of the Terms of Use.