This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
A System for Automatic Notification and Severity Estimation of Automotive Accidents
May 2014 (vol. 13 no. 5)
pp. 1-1
Carlos T. Calafate, , Universitat Politècnica de València, Valencia, Spain
Juan-Carlos Cano, , Universitat Politècnica de València, Valencia, Spain
Francisco J. Martinez, , University of Zaragoza, Teruel, Spain
Piedad Garrido, , University of Zaragoza, Teruel, Spain
Manuel Fogue, , University of Zaragoza, Teruel, Spain
Pietro Manzoni, , Universitat Politècnica de València, Valencia, Spain
New communication technologies integrated into modern vehicles offer an opportunity for better assistance to people injured in traffic accidents. Recent studies show how communication capabilities should be supported by artificial intelligence systems capable of automating many of the decisions to be taken by emergency services, thereby adapting the rescue resources to the severity of the accident and reducing assistance time. To improve the overall rescue process, a fast and accurate estimation of the severity of the accident represent a key point to help emergency services better estimate the required resources. This paper proposes a novel intelligent system which is able to automatically detect road accidents, notify them through vehicular networks, and estimate their severity based on the concept of data mining and knowledge inference. Our system considers the most relevant variables that can characterize the severity of the accidents (variables such as the vehicle speed, the type of vehicles involved, the impact speed, and the status of the airbag). Results show that a complete Knowledge Discovery in Databases (KDD) process, with an adequate selection of relevant features, allows generating estimation models that can predict the severity of new accidents. We develop a prototype of our system based on off-the-shelf devices and validate it at the Applus+ IDIADA Automotive Research Corporation facilities, showing that our system can notably reduce the time needed to alert and deploy emergency services after an accident takes place.
Index Terms:
Accidents,Vehicles,Sensors,Estimation,Emergency services,Databases,Mobile computing,Mobile communication systems,Computer Systems Organization,Communication/Networking and Information Technology,Network Architecture and Design,Wireless communication,Mobile Computing,traffic accident assistance,KDD,data mining,vehicular networks
Citation:
Carlos T. Calafate, Juan-Carlos Cano, Francisco J. Martinez, Piedad Garrido, Manuel Fogue, Pietro Manzoni, "A System for Automatic Notification and Severity Estimation of Automotive Accidents," IEEE Transactions on Mobile Computing, vol. 13, no. 5, pp. 1-1, May 2014, doi:10.1109/TMC.2013.35
Usage of this product signifies your acceptance of the Terms of Use.