The Community for Technology Leaders
RSS Icon
Subscribe
Issue No.05 - May (2014 vol.13)
pp: 948-963
Manuel Fogue , Univ. of Zaragoza, Teruel, Spain
Piedad Garrido , Univ. of Zaragoza, Teruel, Spain
Francisco J. Martinez , Univ. of Zaragoza, Teruel, Spain
Juan-Carlos Cano , Univ. Politec. de Valencia, Valencia, Spain
Carlos T. Calafate , Univ. Politec. de Valencia, Valencia, Spain
Pietro Manzoni , Univ. Politec. de Valencia, Valencia, Spain
ABSTRACT
New communication technologies integrated into modern vehicles offer an opportunity for better assistance to people injured in traffic accidents. Recent studies show how communication capabilities should be supported by artificial intelligence systems capable of automating many of the decisions to be taken by emergency services, thereby adapting the rescue resources to the severity of the accident and reducing assistance time. To improve the overall rescue process, a fast and accurate estimation of the severity of the accident represent a key point to help emergency services better estimate the required resources. This paper proposes a novel intelligent system which is able to automatically detect road accidents, notify them through vehicular networks, and estimate their severity based on the concept of data mining and knowledge inference. Our system considers the most relevant variables that can characterize the severity of the accidents (variables such as the vehicle speed, the type of vehicles involved, the impact speed, and the status of the airbag). Results show that a complete Knowledge Discovery in Databases (KDD) process, with an adequate selection of relevant features, allows generating estimation models that can predict the severity of new accidents. We develop a prototype of our system based on off-the-shelf devices and validate it at the Applus+ IDIADA Automotive Research Corporation facilities, showing that our system can notably reduce the time needed to alert and deploy emergency services after an accident takes place.
INDEX TERMS
vehicular ad hoc networks, artificial intelligence, automotive electronics, data mining, emergency services, intelligent transportation systems, road accidents, road vehicles,Applus+ IDIADA Automotive Research Corporation facilities, automatic notification, severity estimation, automotive accidents, communication technologies, modern vehicles, artificial intelligence systems, emergency services, assistance time, intelligent system, road accidents, vehicular networks, data mining, knowledge inference, vehicle speed, impact speed, airbag, knowledge discovery, databases, KDD process, estimation models, off-the-shelf devices,Accidents, Vehicles, Sensors, Estimation, Emergency services, Databases, Mobile computing,Mobile communication systems, Computer Systems Organization, Communication/Networking and Information Technology, Network Architecture and Design, Wireless communication, Mobile Computing,traffic accident assistance, KDD, data mining, vehicular networks
CITATION
Manuel Fogue, Piedad Garrido, Francisco J. Martinez, Juan-Carlos Cano, Carlos T. Calafate, Pietro Manzoni, "A System for Automatic Notification and Severity Estimation of Automotive Accidents", IEEE Transactions on Mobile Computing, vol.13, no. 5, pp. 948-963, May 2014, doi:10.1109/TMC.2013.35
7 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool