This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Efficient In-Network Computing with Noisy Wireless Channels
Nov. 2013 (vol. 12 no. 11)
pp. 2167-2177
Chengzhi Li, Broadcom Corporation, Matawan
Huaiyu Dai, North Carolina State University, Raleigh
In this paper, we study distributed function computation in a noisy multihop wireless network. We adopt the adversarial noise model, for which independent binary symmetric channels are assumed for any point-to-point transmissions, with (not necessarily identical) crossover probabilities bounded above by some constant $(\epsilon)$. Each node takes an $(m)$-bit integer per instance, and the computation is activated after each node collects $(N)$ readings. The goal is to compute a global function with a certain fault tolerance in this distributed setting; we mainly deal with divisible functions, which essentially cover the main body of interest for wireless applications. We focus on protocol designs that are efficient in terms of communication complexity. We first devise a general protocol for evaluating any divisible functions, addressing both one-shot $((N = O(1)))$ and block computation, and both constant and large $(m)$ scenarios. We also analyze the bottleneck of this general protocol in different scenarios, which provides insights into designing more efficient protocols for specific functions. In particular, we endeavor to improve the design for two exemplary cases: the identity function, and size-restricted type-threshold functions, both focusing on the constant $(m)$ and $(N)$ scenario. We explicitly consider clustering, rather than hypothetical tessellation, in our protocol design.
Index Terms:
Protocols,Complexity theory,Noise measurement,Spread spectrum communication,Noise,Vectors,Histograms,clustering,Distributed computing,noisy multihop network
Citation:
Chengzhi Li, Huaiyu Dai, "Efficient In-Network Computing with Noisy Wireless Channels," IEEE Transactions on Mobile Computing, vol. 12, no. 11, pp. 2167-2177, Nov. 2013, doi:10.1109/TMC.2012.185
Usage of this product signifies your acceptance of the Terms of Use.