This Article 
 Bibliographic References 
 Add to: 
Achieving User-Level Fairness in Open-Access Femtocell-Based Architecture
Oct. 2013 (vol. 12 no. 10)
pp. 1943-1954
Zhixue Lu, Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA
T. Bansal, Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA
P. Sinha, Dept. of Comput. Sci. & Eng., Ohio State Univ., Columbus, OH, USA
Femtocell-based architectures have the potential to position the cellular service providers to compete head-on with the WiFi market. However, significant interference can happen due to unplanned deployments. Current use of hard partitioning approaches for resource allocation, and lack of guidelines for configuring the femtocells, makes it difficult to obtain significant performance gains over traditional cellular networks. In this paper, we study the dynamic OFDMA subchannel assignment problem while jointly considering power assignment and association control to provide maxmin fairness. Toward this objective, we first consider a noninterfering model (NINT model), which disallows interfering femtocells in the solution. A more general interfering model (INT model) is then considered under which the problem is transformed into the partition coloring problem. We then show the NP-hardness of the problems and design centralized approximation algorithms with provable bounds and distributed solutions. Through extensive simulations in realistic settings we show that, compared to previous work, our solutions under the NINT model can achieve two times the minimum throughput, and under the INT model the minimum throughput can be up to three times the baseline algorithms.
Index Terms:
optimisation,approximation theory,femtocellular radio,frequency division multiple access,OFDM modulation,user-level fairness,baseline algorithms,INT model,NINT model,centralized approximation algorithms,NP-hardness,partition coloring problem,general interfering model,noninterfering model,maxmin fairness,association control,power assignment,dynamic OFDMA subchannel assignment problem,cellular networks,resource allocation,unplanned deployments,WiFi market,cellular service providers,open-access Femtocell-based architecture,Resource management,Interference,Macrocell networks,Throughput,Mobile computing,Downlink,fairness,Resource management,Interference,Tiles,Macrocell networks,Throughput,Mobile computing,Downlink,resource allocation,Femtocell
Zhixue Lu, T. Bansal, P. Sinha, "Achieving User-Level Fairness in Open-Access Femtocell-Based Architecture," IEEE Transactions on Mobile Computing, vol. 12, no. 10, pp. 1943-1954, Oct. 2013, doi:10.1109/TMC.2012.157
Usage of this product signifies your acceptance of the Terms of Use.