This Article 
   
 Share 
   
 Bibliographic References 
   
 Add to: 
 
Digg
Furl
Spurl
Blink
Simpy
Google
Del.icio.us
Y!MyWeb
 
 Search 
   
Relay Selection for Geographical Forwarding in Sleep-Wake Cycling Wireless Sensor Networks
March 2013 (vol. 12 no. 3)
pp. 475-488
K. P. Naveen, Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India
A. Kumar, Dept. of Electr. Commun. Eng., Indian Inst. of Sci., Bangalore, India
Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al.
Index Terms:
wireless sensor networks,Markov processes,statistical distributions,telecommunication network routing,POMDP,relay selection,geographical forwarding,sleep-wake cycling,wireless sensor network,sporadic alarm packet,WSN,local forwarding algorithm,end-to-end delay,one-hop waiting delay,end-to-end total cost objective,probability distribution,partially observable Markov decision process,Relays,Delay,Wireless sensor networks,Mobile computing,Computational modeling,Probability,opportunistic forwarding,Relay selection,wireless sensor networks,sleep-wake cycling,geographical forwarding,asset selling problem,wireless networks with intermittent links
Citation:
K. P. Naveen, A. Kumar, "Relay Selection for Geographical Forwarding in Sleep-Wake Cycling Wireless Sensor Networks," IEEE Transactions on Mobile Computing, vol. 12, no. 3, pp. 475-488, March 2013, doi:10.1109/TMC.2011.279
Usage of this product signifies your acceptance of the Terms of Use.